首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land‐sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land‐sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small‐scale, land‐sparing coffee‐production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest‐dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well‐defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large‐scale land‐sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land‐use patterns. Un Método para Reservar Tierras a Pequeña Escala para Conservar la Biodiversidad en Paisajes Agrícolas Tropicales  相似文献   

2.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

3.
Abstract:  Although sacred groves are important for conservation in India, the landscape that surrounds them has a vital influence on biodiversity within them. Research has focused on tree diversity inside these forest patches. In a coffee-growing region of the Western Ghats, however, landscape outside sacred groves is also tree covered because planters have retained native trees to provide shade for coffee plants. We examined the diversity of trees, birds, and macrofungi at 58 sites—10 forest-reserve sites, 25 sacred groves, and 23 coffee plantations— in Kodagu district. We measured landscape composition and configuration around each site with a geographic information system. To identify factors associated with diversity we constructed multivariate models by using a decision-tree technique. The conventional measures of landscape fragmentation such as patch size did not influence species richness. Distance of sacred groves from the forest reserve had a weak influence. The measures of landscape structure (e.g., tree cover in the surroundings) and stand structure (e.g., variability in canopy height) contributed to the variation in species richness explained by multivariate models. We suggest that biodiversity present within sacred groves has been influenced by native tree cover in the surrounding landscape. To conserve this biodiversity the integrity of the tree-covered landscape matrix will need to be conserved.  相似文献   

4.
Designing agroecosystems that are compatible with the conservation of biodiversity is a top conservation priority. However, the social variables that drive native biodiversity conservation in these systems are poorly understood. We devised a new approach to identify social–ecological linkages that affect conservation outcomes in agroecosystems and in social‐ecological systems more broadly. We focused on coastal agroforests in Fiji, which, like agroforests across other small Pacific Islands, are critical to food security, contain much of the country's remaining lowland forests, and have rapidly declining levels of native biodiversity. We tested the relationships among social variables and native tree species richness in agroforests with structural equation models. The models were built with data from ecological and social surveys in 100 agroforests and associated households. The agroforests hosted 95 native tree species of which almost one‐third were endemic. Fifty‐eight percent of farms had at least one species considered threatened at the national or international level. The best‐fit structural equation model (R2 = 47.8%) showed that social variables important for community resilience—local ecological knowledge, social network connectivity, and livelihood diversity—had direct and indirect positive effects on native tree species richness. Cash‐crop intensification, a driver of biodiversity loss elsewhere, did not negatively affect native tree richness within parcels. Joining efforts to build community resilience, specifically by increasing livelihood diversity, local ecological knowledge, and social network connectivity, may help conservation agencies conserve the rapidly declining biodiversity in the region.  相似文献   

5.
Epiphytes, air plants that are structurally dependent on trees, are a keystone group in tropical forests; they support the food and habitat needs of animals and influence water and nutrient cycles. They reach peak diversity in humid montane forests. Climate predictions for Central American mountains include increased temperatures, altered precipitation seasonality, and increased cloud base heights, all of which may challenge epiphytes. Although remaining montane forests are highly fragmented, many tropical agricultural systems include trees that host epiphytes, allowing epiphyte communities to persist even in landscapes with lower forest connectivity. I used structural equations models to test the relative effects of climate, land use, tree characteristics, and biotic interactions on vascular epiphyte diversity with data from 31 shade coffee farms and 2 protected forests in northern Nicaragua. I also tested substrate preferences of common species with randomization tests. Tree size, tree diversity, and climate all affected epiphyte richness, but the effect of climate was almost entirely mediated by bryophyte cover. Bryophytes showed strong sensitivity to mean annual temperature and insolation. Many ferns and some orchids were positively associated with bryophyte mats, whereas bromeliads tended to establish among lichen or on bare bark. The tight relationships between bryophytes and climate and between bryophytes and vascular epiphytes indicated that relatively small climate changes could result in rapid, cascading losses of montane epiphyte communities. Currently, shade coffee farms can support high bryophyte cover and diverse vascular epiphyte assemblages when larger, older trees are present. Agroforests serve as valuable reservoirs for epiphyte biodiversity and may be important early-warning systems as the climate changes.  相似文献   

6.
Abstract: Quality of the agricultural matrix profoundly affects biodiversity and dispersal in agricultural areas. Vegetatively complex coffee agroecosystems maintain species richness at larger distances from the forest. Epiphytes colonize canopy trees and provide resources for birds and insects and thus effects of agricultural production on epiphytes may affect other species. We compared diversity, composition, and vertical stratification of epiphytes in a forest fragment and in two coffee farms differing in management intensity in southern Mexico. We also examined spatial distribution of epiphytes with respect to the forest fragment to examine quality of the two agricultural matrix types for epiphyte conservation. We sampled vascular epiphytes in a forest fragment, a shade polyculture farm, and a shade monoculture farm at 100 m, 200 m, and 400 m from the forest. Epiphyte and orchid richness was greater in the forest than in the monoculture but richness was similar in the forest and polyculture farm. Epiphyte species composition differed with habitat type, but not with distance from the forest. In the forest, epiphytes were distributed throughout tree canopies, but in the farms, epiphytes were primarily found on trunks and larger branches. Epiphyte richness and species similarity to forest species declined with distance from the forest fragment in the monoculture, but richness and similarity to forest species did not decline with distance from forest in the polyculture. This suggests polyculture coffee has greater conservation value. In contrast, monoculture coffee is likely a sink habitat for epiphytes dispersing from forests into coffee. Coffee farms differ from forests in terms of the habitat they provide and species composition, thus protecting forest fragments is essential for epiphyte conservation. Nonetheless, in agricultural landscapes, vegetatively complex coffee farms may contribute to conservation of epiphytes more than other agricultural land uses.  相似文献   

7.
Intensification of food production in tropical landscapes in the absence of land‐use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle‐production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate‐intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non‐native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70–90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate‐intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low‐intensity production systems, in which forest structure and extent were intact, intermediate‐intensity silvopastoral systems supported significantly fewer forest‐restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate‐intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest‐restricted species in this agricultural frontier. Compromisos entre la Producción de Ganado y la Conservación de Aves en una Frontera Agrícola del Gran Chaco de Argentina  相似文献   

8.
Much of the biodiversity‐related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop‐climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near‐term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. Uso de Cambios en la Utilidad Agrícola para Cuantificar Riesgos Futuros para la Conservación Inducidos por el Clima  相似文献   

9.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

10.
Abstract: Coffee farms can support significant biodiversity, yet intensification of farming practices is degrading agricultural habitats and compromising ecosystem services such as biological pest control. The coffee berry borer (Hypothenemus hampei) is the world's primary coffee pest. Researchers have demonstrated that birds reduce insect abundance on coffee farms but have not documented avian control of the berry borer or quantified avian benefits to crop yield or farm income. We conducted a bird‐exclosure experiment on coffee farms in the Blue Mountains, Jamaica, to measure avian pest control of berry borers, identify potential predator species, associate predator abundance and borer reductions with vegetation complexity, and quantify resulting increases in coffee yield. Coffee plants excluded from foraging birds had significantly higher borer infestation, more borer broods, and greater berry damage than control plants. We identified 17 potential predator species (73% were wintering Neotropical migrants), and 3 primary species composed 67% of migrant detections. Average relative bird abundance and diversity and relative resident predator abundance increased with greater shade‐tree cover. Although migrant predators overall did not respond to vegetation complexity variables, the 3 primary species increased with proximity to noncoffee habitat patches. Lower infestation on control plants was correlated with higher total bird abundance, but not with predator abundance or vegetation complexity. Infestation of fruit was 1–14% lower on control plants, resulting in a greater quantity of saleable fruits that had a market value of US$44–$105/ha in 2005/2006. Landscape heterogeneity in this region may allow mobile predators to provide pest control broadly, despite localized farming intensities. These results provide the first evidence that birds control coffee berry borers and thus increase coffee yield and farm income, a potentially important conservation incentive for producers.  相似文献   

11.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   

12.
Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions.  相似文献   

13.
A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co‐benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co‐benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. Identificación de Áreas en Brasil que Optimizan la Conservación del Carbono del Bosque, Jaguares y la Biodiversidad.  相似文献   

14.
Widespread loss of primary habitat in the tropics has led to increased interest in production landscapes for biodiversity conservation. In the Western Ghats biodiversity hotspot in India, shade coffee plantations are located in close proximity to sites of high conservation value: protected and unprotected forests. Coffee is grown here under a tree canopy that may be dominated by native tree species or by nonnative species, particularly silver oak (Grevillea robusta). We investigated the influence of properties at the local scale and the landscape scale in determining bird communities in coffee plantations, with particular emphasis on species of conservation priority. We used systematic point counts in 11 coffee plantation sites and analyzed data in a randomized linear modeling framework that addressed spatial autocorrelation. Greater proportion of silver oak at the local scale and distance to contiguous forests at the landscape scale were implicated as factors most strongly driving declines in bird species richness and abundance, while increased basal area of native tree species, a local-scale variable, was frequently related to increased bird species richness and abundance. The influence of local-scale variables increased at greater distances from the forest. Distance to forests emerged as the strongest predictor of declines in restricted-range species, with 92% reduction in the abundance of two commonly encountered restricted-range species (Pompadour Green Pigeon and Yellow-browed Bulbul) and a 43% reduction in richness of bird species restricted to Indian hill forests within 8 km of forests. Increase in proportion of silver oak from 33% to 55% was associated with 91% reduction in the abundance of one commonly encountered restricted-range species (Crimson-fronted Barbet). One conservation strategy is providing incentives to grow coffee in a biodiversity-friendly manner. One implication of our study is that plantations located at varying distances to the forest cannot be compared fairly for biodiversity friendliness by existing certification methodology. Another is that conservation of existing forests at the landscape scale is essential for maintaining higher biodiversity in coffee plantations. Incentive schemes that promote conservation of remnant forests at the landscape scale and biodiversity-friendly practices locally and that relate to coffee communities as a whole rather than individual planters are likely to be more effective.  相似文献   

15.
Conservation of Vascular Epiphyte Diversity in Mexican Coffee Plantations   总被引:1,自引:0,他引:1  
Abstract:  Coffee plantations have replaced many lower-montane forests in the Neotropics, and ongoing intensification is converting traditional polycultures with a variety of shade trees to plantations with no or monospecific shade trees. To evaluate the impact of coffee cultivation on epiphyte diversity, I surveyed vascular epiphytes on shade trees in nine different coffee plantations and compared records with those in four natural forests in central Veracruz, Mexico. Eighty-nine species occurred in coffee plantations, and 104 species occurred in natural forests. The number of epiphytic species in traditional polycultures with old shade trees, mostly of the genus Inga , was similar to that in forests, but plantations with small trees and sparse shade hosted fewer epiphytes than those with large trees. Epiphyte communities were, however, more homogeneous in coffee plantations than in forests, possibly because of a drier microclimate and the lack of large and long-lived trees. These results demonstrate the value of traditional polycultures for epiphyte diversity, show the importance of conserving large shade trees, and suggest that these coffee systems may not be suitable for all epiphytes.  相似文献   

16.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

17.
Conservationists need methods to conserve biological diversity while allowing species and communities to rearrange in response to a changing climate. We developed and tested such a method for northeastern North America that we based on physical features associated with ecological diversity and site resilience to climate change. We comprehensively mapped 30 distinct geophysical settings based on geology and elevation. Within each geophysical setting, we identified sites that were both connected by natural cover and that had relatively more microclimates indicated by diverse topography and elevation gradients. We did this by scoring every 405 ha hexagon in the region for these two characteristics and selecting those that scored >SD 0.5 above the mean combined score for each setting. We hypothesized that these high‐scoring sites had the greatest resilience to climate change, and we compared them with sites selected by The Nature Conservancy for their high‐quality rare species populations and natural community occurrences. High‐scoring sites captured significantly more of the biodiversity sites than expected by chance (p < 0.0001): 75% of the 414 target species, 49% of the 4592 target species locations, and 53% of the 2170 target community locations. Calcareous bedrock, coarse sand, and fine silt settings scored markedly lower for estimated resilience and had low levels of permanent land protection (average 7%). Because our method identifies—for every geophysical setting—sites that are the most likely to retain species and functions longer under a changing climate, it reveals natural strongholds for future conservation that would also capture substantial existing biodiversity and correct the bias in current secured lands.  相似文献   

18.
After their failure to achieve a significant reduction in the global rate of biodiversity loss by 2010, world governments adopted 20 new ambitious Aichi biodiversity targets to be met by 2020. Efforts to achieve one particular target can contribute to achieving others, but different targets may sometimes require conflicting solutions. Consequently, lack of strategic thinking might result, once again, in a failure to achieve global commitments to biodiversity conservation. We illustrate this dilemma by focusing on Aichi Target 11. This target requires an expansion of terrestrial protected area coverage, which could also contribute to reducing the loss of natural habitats (Target 5), reducing human‐induced species decline and extinction (Target 12), and maintaining global carbon stocks (Target 15). We considered the potential impact of expanding protected areas to mitigate global deforestation and the consequences for the distribution of suitable habitat for >10,000 species of forest vertebrates (amphibians, birds, and mammals). We first identified places where deforestation might have the highest impact on remaining forests and then identified places where deforestation might have the highest impact on forest vertebrates (considering aggregate suitable habitat for species). Expanding protected areas toward locations with the highest deforestation rates (Target 5) or the highest potential loss of aggregate species’ suitable habitat (Target 12) resulted in partially different protected area network configurations (overlapping with each other by about 73%). Moreover, the latter approach contributed to safeguarding about 30% more global carbon stocks than the former. Further investigation of synergies and trade‐offs between targets would shed light on these and other complex interactions, such as the interaction between reducing overexploitation of natural resources (Targets 6, 7), controlling invasive alien species (Target 9), and preventing extinctions of native species (Target 12). Synergies between targets must be identified and secured soon and trade‐offs must be minimized before the options for co‐benefits are reduced by human pressures.  相似文献   

19.
One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad‐leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad‐leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning.  相似文献   

20.
The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem‐based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high‐resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high‐resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high‐resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high‐resolution remote sensing into broad‐scale biodiversity and population studies in remote areas, where it can provide much needed detail. Aplicaciones de Imágenes de Muy Alta Resolución en el Estudio y Conservación de Grandes Depredadores en el Océano Antártico  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号