首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biogeographic theory predicts that rare species occur more often in larger, less‐isolated habitat patches and suggests that patch size and connectivity are positive predictors of patch quality for conservation. However, in areas substantially modified by humans, rare species may be relegated to the most isolated patches. We used data from plant surveys of 81 meadow patches in the Georgia Basin of Canada and the United States to show that presence of threatened and endangered plants was positively predicted for patches that were isolated on small islands surrounded by ocean and for patches that were isolated by surrounding forest. Neither patch size nor connectivity were positive predictors of rare species occurrence. Thus, in our study area, human influence, presumably due to disturbance or introduction of competitive non‐native species, appears to have overwhelmed classical predictors of rare species distribution, such that greater patch isolation appeared to favor presence of rare species. We suggest conservation planners consider the potential advantages of protecting geographically isolated patches in human‐modified landscapes because such patches may represent the only habitats in which rare species are likely to persist. Influencia Humana y Predictores Biogeográficos Clásicos de la Ocurrencia de Especies Raras  相似文献   

2.
The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation.  相似文献   

3.
The conservation implications of large‐scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free‐standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free‐standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind‐dispersed seeds. Connections between the patchy spatial distribution of free‐standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free‐standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow‐growing mature‐phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest‐area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical  相似文献   

4.
Organisms can be affected by processes in the surrounding landscape outside the boundary of habitat areas and by local vegetation characteristics. There is substantial interest in understanding how these processes affect populations of grassland birds, which have experienced substantial population declines. Much of our knowledge regarding patterns of occupancy and density stem from prairie systems, whereas relatively little is known regarding how occurrence and abundance of grassland birds vary in reclaimed surface mine grasslands. Using distance sampling and single‐season occupancy models, we investigated how the occupancy probability of Grasshopper (Ammodramus savannarum) and Henslow's Sparrows (A. henslowii) on 61 surface mine grasslands (1591 ha) in Pennsylvania changed from 2002 through 2011 in response to landscape, grassland, and local vegetation characteristics . A subset (n = 23; 784 ha) of those grasslands were surveyed in 2002, and we estimated changes in sparrow density and vegetation across 10 years. Grasshopper and Henslow's Sparrow populations declined 72% and 49%, respectively from 2002 to 2011, whereas overall woody vegetation density increased 2.6 fold. Henslow's Sparrows avoided grasslands with perimeter–area ratios ≥0.141 km/ha and woody shrub densities ≥0.04 shrubs/m2. Both species occupied grasslands ≤13 ha, but occupancy probability declined with increasing grassland perimeter–area ratio and woody shrub density. Grassland size, proximity to nearest neighboring grassland ( = 0.2 km), and surrounding landscape composition at 0.5, 1.5, and 3.0 km were not parsimonious predictors of occupancy probability for either species. Our results suggest that reclaimed surface mine grasslands, without management intervention, are ephemeral habitats for Grasshopper and Henslow's Sparrows. Given the forecasted decline in surface coal production for Pennsylvania, it is likely that both species will continue to decline in our study region for the foreseeable future. Patrones de Ocupación de Poblaciones Regionalmente Declinantes de Gorriones de Pastizales en un Paisaje Boscoso de Pennsylvania  相似文献   

5.
Recovery planning for species listed under the U.S. Endangered Species Act has been hampered by a lack of consistency and transparency, which can be improved by implementing a standardized approach for evaluating species status and developing measurable recovery criteria. However, managers lack an assessment method that integrates threat abatement and can be used when demographic data are limited. To help meet these needs, we demonstrated an approach for evaluating species status based on habitat configuration data. We applied 3 established persistence measures (patch occupancy, metapopulation capacity, and proportion of population lost) to compare 2 conservation strategies (critical habitat designated by the U.S. Fish and Wildlife Service and the Forest Service's Carbonate Habitat Management Strategy) and 2 threat scenarios (maximum limestone mining, removal of all habitat in areas with mining claims; minimum mining, removal of habitat only in areas with existing operations and high‐quality ore) against a baseline of existing habitat for 3 federally listed plant species. Protecting all area within the designated critical habitat maintained a similar level (83.9–99.9%) of species persistence as the baseline, whereas maximum mining greatly reduced persistence (0.51–38.4% maintained). The 3 persistence measures provided complementary insights reflecting different aspects of habitat availability (total area, number of patches, patch size, and connectivity). These measures can be used to link recovery criteria developed following the 3 R principles (representation, redundancy, and resilience) to the resulting improvements in species viability. By focusing on amount and distribution of habitat, our method provides a means of assessing the status of data‐poor species to inform decision making under the Endangered Species Act.  相似文献   

6.
The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.  相似文献   

7.
Abstract: The lack of long‐term baseline data restricts the ability to measure changes in biological diversity directly and to determine its cause. This hampers conservation efforts and limits testing of basic tenets of ecology and conservation biology. We used a historical baseline survey to track shifts in the abundance and distribution of 296 native understory species across 82 sites over 55 years in the fragmented forests of southern Wisconsin. We resurveyed stands first surveyed in the early 1950s to evaluate the influence of patch size and surrounding land cover on shifts in native plant richness and heterogeneity and to evaluate changes in the relative importance of local site conditions versus the surrounding landscape context as drivers of community composition and structure. Larger forests and those with more surrounding forest cover lost fewer species, were more likely to recruit new species, and had lower rates of homogenization than smaller forests in more fragmented landscapes. Nearby urbanization further reduced both alpha and beta understory diversity. Similarly, understory composition depended strongly on local site conditions in the original survey but only weakly reflected the surrounding landscape composition. By 2005, however, the relative importance of these factors had reversed such that the surrounding landscape structure is now a much better predictor of understory composition than are local site conditions. Collectively, these results strongly support the idea that larger intact habitat patches and landscapes better sustain native species diversity and demonstrate that humans play an increasingly important role in driving patterns of native species diversity and community composition.  相似文献   

8.
Many studies have evaluated effectiveness of corridors by measuring species presence in and movement through small structural corridors. However, few studies have assessed whether these response variables are adequate for assessing whether the conservation goals of the corridors have been achieved or considered the costs or lag times involved in measuring the response variables. We examined 4 response variables—presence of the focal species in the corridor, interpatch movement via the corridor, gene flow, and patch occupancy—with respect to 3 criteria—relevance to conservation goals, lag time (fewest generations at which a positive response to the corridor might be evident with a particular variable), and the cost of a study when applying a particular variable. The presence variable had the least relevance to conservation goals, no lag time advantage compared with interpatch movement, and only a moderate cost advantage over interpatch movement or gene flow. Movement of individual animals between patches was the most appropriate response variable for a corridor intended to provide seasonal migration, but it was not an appropriate response variable for corridor dwellers, and for passage species it was only moderately relevant to the goals of gene flow, demographic rescue, and recolonization. Response variables related to gene flow provided a good trade‐off among cost, relevance to conservation goals, and lag time. Nonetheless, the lag time of 10–20 generations means that evaluation of conservation corridors cannot occur until a few decades after a corridor has been established. Response variables related to occupancy were most relevant to conservation goals, but the lag time and costs to detect corridor effects on occupancy were much greater than the lag time and costs to detect corridor effects on gene flow. Variables de Respuesta para la Evaluación de la Efectividad de los Corredores de Conservación  相似文献   

9.
Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species.  相似文献   

10.
The connectivity of remnant patches of habitat may affect the persistence of species in fragmented landscapes. We evaluated the effects of the structural connectivity of forest patches (i.e., distance between patches) and matrix class (land-cover type) on the functional connectivity of 3 bird species (the White-crested Elaenia [Elaenia albiceps], the Green-backed Firecrown Hummingbird [Sephanoides sephaniodes], and the Austral Thrush [Turdus falklandii]). We measured functional connectivity as the rate at which each species crossed from one patch to another. We also evaluated whether greater functional connectivity translated into greater ecological connectivity (dispersal of fruit and pollen) by comparing among forest patches fruit set of a plant pollinated by hummingbirds and abundance of seedlings and adults of 2 plants with bird- and wind-dispersed seeds. Interpatch distance was strongly associated with functional connectivity, but its effect was not independent of matrix class. For one of the bird-dispersed plants, greater functional connectivity for White-crested Elaenias and Austral Thrushes (both frugivores) was associated with higher densities of this plant. The lack of a similar association for the wind-dispersed species suggests this effect is linked to the dispersal vector. The abundance of the hummingbird-pollinated species was not related to the presence of hummingbirds. Interpatch distance and matrix class affect animal movement in fragmented landscapes and may have a cascading effect on the distribution of some animal-dispersed species. On the basis of our results, we believe effort should be invested in optimizing patch configuration and modifying the matrix so as to mitigate the effects of patch isolation in fragmented landscapes.  相似文献   

11.
Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human‐dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long‐term conservation of tigers requires that the species be able to meet some of its life‐history needs beyond the boundaries of small protected areas and within the working landscape, including multiple‐use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km2 Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166‐km2 cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell‐scale occupancy and segment‐scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected‐area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence in some multiple‐use forests. Restrictions on human‐use in high‐quality tiger habitat in multiple‐use forests may complement existing protected areas and collectively promote the persistence of tiger populations in working landscapes.  相似文献   

12.
Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch‐size‐induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland‐bird demography and could be an effective component of climate‐change adaptation.  相似文献   

13.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

14.
Habitat loss and fragmentation are causing widespread population declines, but identifying how and when to intervene remains challenging. Predicting where extirpations are likely to occur and implementing management actions before losses result may be more cost‐effective than trying to reestablish lost populations. Early indicators of pressure on populations could be used to make such predictions. Previous work conducted in 2009 and 2010 identified that the presence of Eastern Yellow Robins (Eopsaltria australis) in 42 sites in a fragmented region of eastern Australia was unrelated to woodland extent within 500 m of a site, but the robins’ heterophil:lymphocyte (H:L) ratios (an indicator of chronic stress) were elevated at sites with low levels of surrounding woodland. We resurveyed these 42 sites in 2013 and 2014 for robin presence to determine whether the H:L ratios obtained in 2009 and 2010 predicted the locations of extirpations and whether the previous pattern in H:L ratios was an early sign that woodland extent would become an important predictor of occupancy. We also surveyed for robins at 43 additional sites to determine whether current occupancy could be better predicted by landscape context at a larger scale, relevant to dispersal movements. At the original 42 sites, H:L ratios and extirpations were not related, although only 4 extirpations were observed. Woodland extent within 500 m had become a strong predictor of occupancy. Taken together, these results provide mixed evidence as to whether patterns of individual condition can reveal habitat relationships that become evident as local shifts in occupancy occur but that are not revealed by a single snapshot of species distribution. Across all 85 sites, woodland extent at scales relevant to dispersal (5 km) was not related to occurrence. We recommend that conservation actions focus on regenerating areas of habitat large enough to support robin territories rather than increasing connectivity within the landscape.  相似文献   

15.
Habitat loss is the principal threat to species. How much habitat remains—and how quickly it is shrinking—are implicitly included in the way the International Union for Conservation of Nature determines a species’ risk of extinction. Many endangered species have habitats that are also fragmented to different extents. Thus, ideally, fragmentation should be quantified in a standard way in risk assessments. Although mapping fragmentation from satellite imagery is easy, efficient techniques for relating maps of remaining habitat to extinction risk are few. Purely spatial metrics from landscape ecology are hard to interpret and do not address extinction directly. Spatially explicit metapopulation models link fragmentation to extinction risk, but standard models work only at small scales. Counterintuitively, these models predict that a species in a large, contiguous habitat will fare worse than one in 2 tiny patches. This occurs because although the species in the large, contiguous habitat has a low probability of extinction, recolonization cannot occur if there are no other patches to provide colonists for a rescue effect. For 4 ecologically comparable bird species of the North Central American highland forests, we devised metapopulation models with area‐weighted self‐colonization terms; this reflected repopulation of a patch from a remnant of individuals that survived an adverse event. Use of this term gives extra weight to a patch in its own rescue effect. Species assigned least risk status were comparable in long‐term extinction risk with those ranked as threatened. This finding suggests that fragmentation has had a substantial negative effect on them that is not accounted for in their Red List category. Estimación del Riesgo de Extinción Mediante Modelos Metapoblacionales de Fragmentación a Gran Escala  相似文献   

16.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   

17.
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low‐elevation wetlands or mid‐elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy—herbaceous alpine ecotones—were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. Patrones Espaciales del Éxito Reproductivo de Osos Pardos, Derivados de Modelos Jerárquicos Multi‐Estado  相似文献   

18.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

19.
Abstract: Although enhancing reserve shape has been suggested as an alternative to enlarging nature reserves, the importance of reserve shape relative to reserve area remains unclear. Here we examined the relative importance of area and shape of forest patches to species richness, species composition, and species abundance (abundance of each species) for 3 taxa (33 birds, 41 butterflies, and 91 forest‐floor plants) in a fragmented landscape in central Hokkaido, northern Japan. We grouped the species according to their potential edge responses (interior‐, neutral‐, and edge‐species groups for birds and forest‐floor plants, woodland‐ and open‐land‐species groups for butterflies) and analyzed them separately. We used a shape index that was independent of area as an index of shape circularization. Hierarchical partitioning and variation partitioning revealed that patch area was generally more important than patch shape for species richness and species composition of birds and butterflies. For forest‐floor plants, effects of patch area and shape were small, whereas effects of local forest structure were large. Patch area and circularization generally increased abundances of interior species of birds and forest‐floor plants and woodland species of butterflies. Nevertheless, only patch circularization increased abundances of 1 woodland species of butterfly and 2 and 6 interior species of birds and forest‐floor plants, respectively. We did not find any significant interaction effects between patch area and shape. Our results suggest that although reserves generally should be large and circular, there is a trade‐off between patch area and shape, which should be taken into consideration when managing reserves.  相似文献   

20.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号