首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the results of heavy metals determination in samples of sedimentary rocks from the Mosina-Krajkowo water well field (Poland). The concentration of heavy metals was analysed by type of rock (sand, gravel, warp, silt, till, and clay). Variation of heavy metal concentrations with depth was studied taking into account the age series of the rocks (fluvial sediments of the modern Warta River valley, sediments of the Baltic Glaciation, tills of the Middle-Polish Glaciation, sediments of the Masovian Interglacial (Holstein), tills of the Poznań series) and granulometric fractions. The grain sizes considered included: >2.0, 2.0-1.0, 1.0-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.063, and <0.063 mm. The concentrations of the heavy metals studied were found to change with the type of rock, age series, and granulometric fraction. The levels of the metals were determined by the technique of atomic absorption spectrometry with flame atomisation (F-AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

2.
The concentration of heavy metals in soil and in Scots pine (Pinus sylvestris) organs growing on a pH gradient from 4.0 to 7.9 of soil at different distances from a cement plant was monitored. Emission for over 40 years of alkaline dust (pH 12.3-12.6) into the atmosphere in North Estonia had resulted in alkalisation and elevated concentration of total heavy metals in upper layers of the soil (0-30 cm), which was considerable even 10 years after the dust pollution stopped. Monitoring showed that the accumulation and allocation of heavy metals varied between the stem, shoots and needles and differed from the trees in the unpolluted area, depending more on the mobility of elements and the pH than element concentrations in the alkaline soil. A strong negative correlation was found between the soil pH and Mn, Zn and Cd concentrations in different tree organs. Compared to the unpolluted area, Pb was present in relatively higher concentrations in all organs but Cr, Fe and Cu in needles and shoots. The concentrations of Mn and Cd were much lower than control in all organs of trees in alkalised soil. The height increment and density of needles on shoots were predominantly in negative correlation with the pH of soil.  相似文献   

3.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

4.
This study was conducted to evaluate the degree of mobility and fractionation of cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) after the addition of municipal solid sewage sludge (MSS) in a sandy calcareous soil. Treatments were (1) soil application of MSS, (2) soil application of enriched municipal solid waste compost (EMSS), and (3) control soil. The MSS application represented a dose of 200 Mg dry weight per hectare. Soil columns were incubated at room temperature for 15 days and irrigated daily with deionized water to make a total of 505 mm. At the end of leaching experiments, soil samples from each column were divided into 14 layers, each being 1 cm down to 10 and 2.5 cm below that and analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, Ni, and Zn. The fractionation of the heavy metals in the top five layers of the surface soil samples was investigated by the sequential extraction method. All soil layers of the columns receiving MSS and EMSS had significantly higher concentrations of DTPA-extractable heavy metals than control soil. The maximum concentration of heavy metals in treated soil was in the surface layer and declined significantly with depth. Sequential extraction results showed that in the treated soil, a major proportion of Cd, Pb, and Ni was associated with organic matter (OM) and exchangeable (EXCH) fractions, and a major proportion of Cu and Zn was associated with residual (RES) and OM fractions. Based on relative percent, Pb, Cd, and Ni in the EXCH fraction was higher than Cu and Zn in soil leached with MSS and EMSS, suggesting that application of this MSS to a sandy calcareous soil, at the loading rate used here, may pose a risk in terms of groundwater contamination with Pb, Cd, and Ni.  相似文献   

5.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

6.
Impact of poor solid waste management on ground water   总被引:1,自引:0,他引:1  
Eight sediment cores recovered from Tamaki Estuary were analysed for Cu, Pb, Zn, and Cd using downward cored sub-samples. The results indicate a significant upward enrichment in heavy metals with the highest concentrations found in the uppermost 0–10 cm layer. Assessment of heavy metal pollution in marine sediments requires knowledge of pre-anthropogenic metal concentrations to act as a reference against which measured values can be compared. Pristine values for the cored sediments were determined from flat “base-line” metal trends evident in lower core samples. Various methods for calculating metal enrichment and contamination factors are reviewed in detail and a modified and more robust version of the procedure for calculating the degree of contamination is proposed. The revised procedure allows the incorporation of a flexible range of pollutants, including various organic species, and the degree of contamination is expressed as an average ratio rather than an absolute summation number. Comparative data for normalized enrichment factors and the modified degree of contamination show that Tamaki Estuary sediments have suffered significant systematic heavy metal contamination following catchment urbanization. Compared to baseline values the uppermost sediment layers show four-fold enrichment averaged across eight cores and four analysed metals.  相似文献   

7.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

8.
Total dissolved trace and major metals and their partitioning in porewater sediment have been investigated at two sites in the Seine River estuary (France). For this purpose, solid phase extraction (SPE) has been employed using specific chelating resins for the separation and preconcentration of organic and inorganic forms of studied metals under controlled (N2) inert atmosphere. In fact, the study is focused on the development of a method for sample collection and handling under inert atmosphere in order to avoid some potential artefacts of the extracted porewater, to preserve the samples from possible chemical oxidation changes and to determine metals partitioning between organic and inorganic forms. For this point, a separation and preconcentration method using two columns in series (chelamine and C18 columns) was used. The trace and major metals fixed on the two resins for all determinations were stripped by nitric acid (2 M) and analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Zeeman Graphite Furnace Atomic Absorption Spectroscopy (ZGF-AAS). The relationship between the distribution of metals and physico-chemical parameters such as pH and Eh (redox potential) as a function of depth was discussed. Some tendency in the distributions and seasonal variability of these traces and major metals are improved. The concentrations for all studied metals decreased as a function of depth where iron and manganese were found at mg L(-1) levels and other metals were found at [micro sign]g L(-1) levels, as well as there were significant fractions of all metals (except of manganese) which were complexed by organic matter. The comparison of data for the major elements (Fe and Mn), obtained by direct determination (without preconcentration) and preconcentration, show a very good recovery.  相似文献   

9.
The present investigation studies the effects of cow and chicken manure and sewage sludge at different rates of addition and with two irrigation waters of different salinities on two major calcareous soils in Bahrain. The aim was to quantify potential improvements in soil quality, the accumulation of trace metals, and quality of leachates.From the pot experiments it was found that soil waterholding capacity did not change significantly after addition of organic amendments, except in the case of sewage sludge. Total organic carbon and total Kjeldhal nitrogen content increased in the 0–5 cm layer. Low salinity water and sewage applications improved aggregate stability. Extractable phosphorus was enhanced by the chicken manure treatment more than others. Addition of different organic amendments did not affect exchangeable cations. pH values did not show appreciable changes and soils were neutral. Trace metals studied were present at non-toxic levels in the 0–5 cm layer. Zinc and copper were the only metal showing a tendency to leach to the lower soil layer. In all cases metal levels in the surface layer were proportional to the quantities added in the amendments and their levels in the leachate were very low.  相似文献   

10.
There is a growing concern over the potential accumulation of heavy metals in soils owing to rapid industrial and urban development and increasing reliance on agrochemicals in the last several decades. These metals can infiltrate through the soil thereby causing groundwater pollution. Surface soil samples (5 to 15 cm) collected from southeastern part of Ranga Reddy district were analyzed for 14 heavy metals (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, V, Y, Zn and Zr) using Philips PW 2440 X-ray fluorescence spectrometer. Results for heavy and trace elements are reported for the first time in soils for this region. The contamination of the soils was assessed on the basis of enrichment factor (EF), geoaccumulation index (I (geo)), contamination factor and degree of contamination. The results reveal that variations in heavy element concentrations in the soil analyzed have both geogenic and anthropogenic contribution, due to the long period of constant human activities in the study area. The concentration of the metals Ba, Rb, Sr, V, Y and Zr were interpreted to be mainly inherited from parent materials (rocks) and the As, Co, Cr, Cu, Mo, Ni, Pb and Zn concentrations show contribution from geogenic and anthropogenic sources. The major element variations in soils are determined by the composition of the parent material predominantly involving granites.  相似文献   

11.
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5–8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.  相似文献   

12.
In this study an assessment is made of the negative impacts of wastewater irrigation on soils and crops sampled along the Khoshk River channel in suburban area of Shiraz City, SW Iran. For this purpose, samples of soil profiles (0–60 cm in depth) and crops were collected from two wastewater irrigated sites and a tube well-irrigated (control) site. Total concentrations of the five heavy metals (Ni, Pb, Cd, Zn and Cr) and their phytoavailable contents were determined. The Pollution Load Indexes (PLIs) and Contamination Factors (CFs) for soils and Hazard quotients (ΣHQ) for some vegetables were also calculated. The results showed the use of untreated wastewater has caused the following changes as compared to control site: (1) a 20–30% increase in organic matter content of soil; (2) increase in pH by 2–3 units; (3) significant concentration increase in Ex-Ca especially in top layers of soil resulting in high CEC; (4) build up of heavy metals (notably Pb and Ni) in topsoil above Maximum Permissible Limits (MPLs) indicating a moderate contamination (PLI > 1, CF > 2.5); (5) contamination of some vegetables (spinach and lettuce) with Cd due to its high phytoavailability in topsoil causing a HQ > 1; (6) excessive accumulation of Ni and Pb in wheat due to continual addition of heavy metals through long-term wastewater application. The study concludes that strict protection measures, stringent guidelines and an integrated system for the treatment and recycling of wastewater are needed to minimize the negative impacts of wastewater irrigation in the study area.  相似文献   

13.
典型重金属污染农田能源植物示范种植研究   总被引:10,自引:0,他引:10       下载免费PDF全文
为探索安全经济利用重金属中度-重度污染农田的模式,在浙江某典型重金属复合污染农田开展了能源植物(甜高粱Sweet sorghum、甘蔗Saccharum sinensisRoxb.、香根草Vetiveria和盐肤木Rhus chinensis)种植示范研究.结果表明,经施加0.1%的石灰和0.2%的磷矿粉改良后,土壤p...  相似文献   

14.
Made-up ground collected from layers of a trial pit excavated on a former industrial site was treated with artificial rainwater in a series of column leaching and sorption experiments. Metal mobility and the ability of various layers of material obtained from the pit to act as sources or sinks of potentially toxic elements were assessed. Samples from different layers varied in their abilities to raise the pH of rainwater applied at pH 3.5 and 4.3, and this was reflected in the amounts of metals mobilised by the rainwater as it percolated through the soil column. Material from the top two layers of the pit released cadmium, copper, manganese, lead, nickel and zinc to the aqueous phase, but the lower layers, with higher buffering capacity, were able to resist acidification even when the equivalent of 12 months' rainfall (western UK) was applied. Column sorption experiments confirmed the ability of material from layer 4 (48-50 cm) to take up copper, manganese and zinc. Metals were determined in the leachates by flame and electrothermal atomic absorption spectrometry and principle anions by ion chromatography.  相似文献   

15.
Active and abandoned primary and secondary goldmines have been observed to be major sources of metals into the environment. This study assessed the level of metal concentrations in rock and tailing samples collected from the abandoned primary goldmine site at Iperindo. A total of five rock and ten tailing samples were collected for this study. The tailing samples were subjected to physicochemical analysis using standard methods. The samples were analyzed for metals using inductively coupled plasma/optical emission spectrometry technique. The results obtained indicated that tailings were acidic (pH 5.02), with electrical conductivity 133.4 μS/cm, cation exchange capacity 8.95 meq/100 g, available phosphorus was 4.74 mg/L, organic carbon 5.58 %, and organic matter 9.63 %. The trends for metal concentrations within the samples were in the order: Zn?>?Cu?>?Co?>?Pb?>?Cr?>?As?>?Cd for rock samples, Cu?>?Zn?>?Cr?>?Pb?>?As?>?Co?>?Cd in tailing samples. Cd, Pb, and Zn in the rock were above the Abundance of Elements in Average Crustal Rocks standards. Principal component analysis showed higher variations among samples in Iperindo. Cd, Pb, Cr, Co, Cu, As, and Zn were strongly loaded to principal component 1, with these metals significantly contributing to variations in 65.76 % of rock and 53.24 % of tailing. This study suggests that the metal concentration in tailings is a reflection of the metal composition of the rocks.  相似文献   

16.
Comparative leaching experiments were carried out using leaching medium with different pH to municipal solid waste in the landfill columns in order to investigate the mobility of heavy metals. The leachate pH and oxidation–reduction potential were measured by oxidation–reduction potential analyzer; the contents of heavy metals were measured by inductively coupled plasma mass spectrometry. It is very different in leaching concentrations of heavy metals; the dynamic leaching of heavy metals decreased with the rise of the leaching amount on the whole. Acid leaching medium had definite influence on the leaching of heavy metals in the early landfill, but it had the obvious inhibition effect on the leaching in the middle and late period of landfill; the neutral and alkaline leaching medium are more beneficial to the leaching of heavy metals. Due to the influence of the environment of landfill, the differences of the results in cumulative leaching amount, leaching rate, and leaching intensity of heavy metals are very big. The calculation results of the release rates of heavy metals prove that the orders of the release rates are not identical under different leaching conditions. Acid rain made heavy metals migrate from municipal solid waste to soil and detain in soil more easily; approached neutral and alkaline leaching mediums are more beneficial to leaching of heavy metals in the municipal solid waste and soil with leachate. The field verification of experimental data showed that the law of heavy metal leaching in municipal solid waste revealed by the experiment has a good consistency with the data obtained by municipal solid waste landfill.  相似文献   

17.
Highways and main roads are a potential source of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Nonetheless, investigations of pollutants in roadside soils are still a subject of major interest due to the rapid development of traffic systems and increasing traffic all over the world. The accumulation of the heavy metals Pb, Cd, Cu and Zn in soils along the oldest federal highway of the world has been studied by sampling a roadside transect of 125 by 10?m. In addition, heavy metal concentrations of Pb, Cd, Zn, Cu, Ni and Cr in soil solutions from different distances (2.5, 5 and 10?m) from the hard shoulder of the highway and from three soil depths (10, 30, and 50?cm) were investigated. The results show that heavy metal concentrations are up to 20 times increased compared to the geochemical background levels and a reference site of 800-m distance from the roadside. Soil matrix concentrations in the topsoil (0-10?cm) mostly exceeded the precautionary values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV). The concentrations of Cd, Pb and Zn in the soil matrix tended to decrease with distance from the roadside edge, whereas the concentrations in the soil solution increased at a distance of 10?m onwards due to a lower soil pH. Because of both high pH values and a high sorption capacity of the soils, soil solution concentrations seldom exceeded the trigger values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV) for transferring soil solution to groundwater.  相似文献   

18.
Incineration has become one of the principal methods for municipal solid waste disposal particularly in all large cities throughout the world. Currently, the municipal solid waste incinerator fly ashes (MSWIF) are disposed of by landfill. The metal speciation of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in MSWIF after been extracted with water at different pH values were examined using a sequential extraction procedure. The extraction sequence was as follows: (1) Exchangeable (NaOAc, pH 8.2), (2) Bound to Carbonates (NaOAc, pH 5.0), (3) Bound to metal oxides (HONH3Cl), (4) Bound to organic matters (HNO3, H2O2), and (5) Residual (HNO3, HCl, H2O2, HF, 1:3:1:3). The heavy metal contents in the extraction solutions were determined by inductively coupled plasma atomic emission spectrometry. The heavy metal concentrations in the different fractions obtained by sequential extraction show distinct distribution trends. The extractable fraction ranges from 25.5 to 88% of the total element content. With the pH of the extractant fall below the neutral and acidic ranges, the concentrations of heavy metals rise substantially due to the released of metals bound to carbonate fraction.  相似文献   

19.
The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0–20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg?1, respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0–20- and 20–40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0–20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by ‘natural’ factors and As originated from natural sources, deposition and irrigation water.  相似文献   

20.
Lignite powered electric generation plants result in increasing environmental problems associated with gaseous emissions and the disposal of ash residues. Especially, low quality coals with high ash content cause enormous quantities of both gaseous and solid fly ash emissions. The main problem is related to the disposal of fly ash, which, in many cases, contains heavy metals. It is known that toxic trace metals may leach when fly ash is in contact with water. In this study, fly ash samples obtained from the thermal power plant in the town of Can in Turkey were investigated for leachability of metals under different acidic and temperature conditions. The experimental results show that a decrease in pH of the leachant favors the extraction of metal ions from fly ash. A significant increase in the extraction of arsenic, cadmium, chromium, zinc, lead, mercury, and selenium ions from the ash is attributed to the instability of the mineral phases. These heavy metals concentrations increase with respect to increasing acidic conditions and temperature. Peak concentrations, in general, were found at around 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号