首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Daily dietary intakes of radioactive and non-radioactive caesium for the Pakistani population were measured. Food samples were collected on market basket method and were analysed using Instrumental Neutron Activation Analysis technique. The radioactive caesium ((137)Cs) in these samples was below the detectable limit, i.e. 1 mBq g(-1). The geometric mean of the mass fraction of stable caesium was 9.56 x 1.53 ng g(-1). The estimated daily dietary intake of caesium was 5.65 x 1.53 microg d(-1) or 0.088 microg kg(-1) of body weight of the reference Pakistani man weighing 64 kg. These values are 38.2% smaller than the recommended ICRP values for a 70 kg standard man. However, caesium concentration in the Pakistani diet is comparable with other reported values in the literature.  相似文献   

2.
Foliar transfer of 241Am, 239,240Pu, 137Cs and 85Sr was evaluated after contamination of bean plants (Phaseolus vulgaris) at the flowering development stage, by soaking their first two trifoliate leaves into contaminated solutions. Initial retentions of 241Am (27%) and 239,240Pu (37%) were higher than those of 137Cs and 85Sr (10-15%). Mean fraction of retained activity redistributed among bean organs was higher for 137Cs (20.3%) than for 239,240Pu (2.2%), 241Am (1%) or 85Sr (0.1%). Mean leaf-to-pod translocation factors (Bq kg(-1) dry weight pod/Bq kg(-1) dry weight contaminated leaves) were 5.0 x 10(-4) for 241Am, 2.7 x 10(-6) for 239,240Pu, 5.4 x 10(-2) for 137Cs and 3.6 x 10(-4) for 85Sr. Caesium was mainly recovered in pods (12.8%). Americium and strontium were uniformly redistributed among leaves, stems and pods. Plutonium showed preferential redistribution in oldest bean organs, leaves and stems, and very little redistribution in forming pods. Results for americium and plutonium were compared to those of strontium and caesium to evaluate the consistency of the attribution of behaviour of strontium to transuranium elements towards foliar transfer, based on translocation factors, as stated in two radioecological models, ECOSYS-87 and ASTRAL.  相似文献   

3.
Radium is one of the prominent potential contaminants linked with industries extracting or processing material containing naturally occurring radionuclides. In this study we investigate if 133Ba and 85Sr can be used as tracers for predicting 226Ra soil-to-plant transfer. Three soil types were artificially contaminated with these radionuclides and transfer to ryegrass and clover was studied. Barium is considered a better tracer for radium than strontium, given the significant linear correlation found between the Ra and Ba-TF. For strontium, no such correlation was found. The relationship between soil characteristics and transfer factors was investigated. Cation exchange capacity, exchangeable Ca+Mg content and soil pH did not seem to influence Ra, Ba or Sr uptake in any clear way. A significant relation (negative power function) was found between the bivalent (Ca+Mg) concentration in the soil solution and the Ra-TF. A similar dependency was found for the Sr and Ba-TF, although less significant.  相似文献   

4.
The (90)Sr and (137)Cs uptake by the plant Helianthus annuus L. was studied during cultivation in a hydroponic medium. The accumulation of radioactivity in plants was measured after 2, 4, 8, 16 and 32 days of cultivation. About 12% of (137)Cs and 20% of (90)Sr accumulated during the experiments. We did not find any differences between the uptake of radioactive and stable caesium and strontium isotopes. Radioactivity distribution within the plant was determined by autoradiography. (137)Cs was present mainly in nodal segments, leaf veins and young leaves. High activity of (90)Sr was localized in leaf veins, stem, central root and stomata. The influence of stable elements or analogues on the transfer behaviour was investigated. The percentage of non-active caesium and strontium concentration in plants decreased with the increasing initial concentration of Cs or Sr in the medium. The percentage of (90)Sr activity in plants decreased with increasing initial activity of the nuclide in the medium, but the activity of (137)Cs in plants increased. The influence of K(+) and NH(4)(+) on the uptake of (137)Cs and the influence of Ca(2+) on the uptake of (90)Sr was tested. The highest accumulation of (137)Cs (24-27% of the initial activity of (137)Cs) was found in the presence of 10 mM potassium and 12 mM ammonium ions. Accumulation of about 22% of initial activity of (90)Sr was determined in plants grown on the medium with 8 mM calcium ions.  相似文献   

5.
This paper reports on radon concentrations in dwellings from fifty different locations of India. The incorporated data were obtained using the passive solid state nuclear track detector technique. The estimated geometric mean value for India is 67.1 Bq m(-3). Chuadanga in Bangladesh had the lowest observed indoor radon concentration of 27.3 Bq m(-3) and Una in the northern part of India had the highest concentration of 281.5 Bq m(-3). This paper discusses the national geometrical mean value in terms of the national geometric mean values of other countries and also in terms of the geological influence. The estimated indoor radon levels are compared with the indoor radon levels as recommended by the International Commission on Radiation Protection (ICRP). It was observed that there are several locations in India where dwellings have higher indoor radon levels than the ICRP recommended value and requires some sort of intervention from regulating authorities. The mean value for indoor radon level given in the report of UNSCEAR 2000 for India needs to be revised.  相似文献   

6.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of (232)Th and (238)U in urine of unexposed Jordanian subjects living in six cities. The range of (232)Th excretion in all subjects was found to be 1.4-640 microBq d(-1) with an average of 34.8 microBq d(-1) (geometric mean 15.8 microBq d(-1)). Results showed no statistically significant correlation with age and residential area. The average value obtained is in agreement with levels considered normal in some recent publications. The average value of (238)U in all samples was found to be 3955 microBq d(-1) (geometric mean 1107 microBq d(-1)), which is higher than reported figures from Germany and India, but in agreement with those figures given in ICRP publication, number 23. The mean values of the different groups were found to be proportional to age up to 60 years. A noticeable drop is observed for subjects greater than 60 years old.  相似文献   

7.
In order to study the plant uptake and downward migration of radiostrontium and radiocesium deposited on to a flooded rice field, 85Sr and 137Cs were applied to the standing water over an acidic sandy soil in planted lysimeters. The plant uptake was quantified with the areal transfer factor (TFa, m2 kg(-1)-dry plant). Following the spiking 14 days after transplanting, the TFa values for the hulled seeds were 3.9 x 10(-4) for 85Sr and 1.4 x 10(-4) for 137Cs, whereas those for the straws were 1.3 x 10(-2) and 3.2 x 10(-4), respectively. The 137Cs TFa from the spiking at the anthesis/milky-ripe stage was several times higher than that from the earlier spiking, whereas the difference was much less in the 85Sr TFa. Such an increase in the 137Cs TFa was attributed mainly to an enhanced plant-base uptake. The addition of KCl and lime after the spiking significantly reduced the TFa values of both radionuclides. The reducing effect was greater for the later spiking. An appreciable fraction of the applied activity leached out of the lysimeter for 85Sr, whereas a negligible fraction leached for 137Cs. The leaching was remarkably increased by the KCl and lime addition for both. A conspicuous localization of 137Cs with respect to the soil surface was observed. In a batch experiment, the 137Cs concentration in the standing water decreased more rapidly than that of 85Sr, both of which were fitted to the power functions of the elapsed time. To add KCl and lime slowed such decreases to lessen the distribution coefficients (Kd) of both 85Sr and 137Cs.  相似文献   

8.
Distribution of cesium (134Cs and 137Cs) and strontium (Sr-II) between soil/water phases depends on many factors such as concentration of these ions between phases, the cation exchange capacity (CEC) of the soil as well as its clay content, chemical composition (especially Na, K, Ca, and Mg ions), grain size distribution, calcite, iron oxide content, and organic coatings. Distribution coefficients (Kd) of cesium (labeled with 137Cs) and strontium were measured on the grain size distributions ≥32 μm of four soil samples. These soils were obtained from four different locations within Inshas site in Egypt and three groundwater samples were obtained from the same site locations. X-ray diffraction showed that the soil samples consisted mainly of quartz mixed with the minor amounts of kaolonite and clay minerals. Sorption experiments were carried out at strontium aqueous concentrations range 10−7 to 10−4 mol l−1. The CEC and Kds for cesium and strontium were measured at the same metal concentrations range. Distribution coefficients of cesium were found to be influenced by the composition of the soil, while the distribution coefficients of strontium were found to depend on calcium concentrations in the soil/groundwater system. The aim of this study was to determine the safety assessment of disposal 137Cs radionuclide and Sr(II) in the aquifer regions inside the Inshas site. Sequential extraction tests showed that, strontium was associated with the carbonate fractions and majority of cesium was sorbed on the iron oxides and the residue.  相似文献   

9.
The transfer of 90Sr to rice plants following its acute ground deposition was examined experimentally in a greenhouse. Lysimeters were flooded after being filled with the soil monoliths from 12 paddy fields. A solution of 90Sr was applied to the standing water in the flooded lysimeters at the pre-transplanting stage or booting stage. Applied 90Sr was mixed with the topsoil only after the pre-transplanting application (PTA). The transfer was quantified with the areal transfer factor (TF(a), m2 kg(-1)-dry) defined as the ratio of the plant concentration to the initial ground deposition. In the PTA, the first-year TF(a) values in the 12 soils were in the range of 8.2 x 10(-3) -2.1 x 10(-2) and 1.7 x 10(-4) -3.6 x 10(-4) for the straws and hulled seeds, respectively. The TF(a) values from the booting-stage application (BSA) were higher than those from the PTA by a factor of up to four. The ratios of the seed TF(a) to the straw TF(a) were, on the whole, higher in the BSA. The 90Sr TF(a) in the PTA was negatively correlated with the soil pH and, to a lesser degree, the exchangeable Ca content. In the second year, the TF(a) in the PTA reduced to 53-90% of that in the first year. A more significant reduction, in general, occurred in a sandier soil. Based on the four consecutive years' transfer data, an overall half-time of the 90Sr TF(a) was estimated to be 2.2 years.  相似文献   

10.
As part of a requirement to improve the assessment of the impact of radioactive fallout on consumed agricultural products, bean plants at four development stages (seedlings, preflowering, late flowering and mature plants) were contaminated by dry deposition of (137)Cs, (85)Sr, (133)Ba and (123m)Te aerosols. The influence of two rain scenarios and of the development stage upon contamination on interception, retention, and translocation to pods was studied. Interception of the four radionuclides was almost identical and varied from 30 to 60% with increasing development stage. The most important rain parameter was the time which elapsed between contamination and the first rain. Whatever the development stage, rain washed off more cesium from the leaves when it occurred 2 days after the deposit (37% at the seedling stage, for example) rather than later on (6 days, 27%), due to rapid migration of Cs in the plant. The first rain washed off nearly 40% of Ba whatever the scenario. For later stages, Sr and Ba were more washed off by heavy weekly rains than by weak twice-a-week rains, perhaps because of the Sr/Ba-contaminated material loss associated with wash off (desquamation of cuticles). Te showed little wash off (less than 5%). Wash off decreased with an older development stage for a weak rain intensity, due to the superimposition of leaves. Heavy rains removed this shelter effect. At harvest, rain effect was no longer detectable as foliar activity was similar for both rain scenarios. Translocation factors (TF) for strontium and barium increased from 6 x 10(-3) to 1 x 10(-1) with the plant development stage upon contamination, whereas those for cesium remained almost unchanged between 2 x 10(-1) and 4 x 10(-1). Flowering is the most critical stage towards residual contamination in pods at harvest, with the exception of direct deposit on pods at the mature stage (TF values are one order of magnitude higher). TF value for Te was 6.5 x 10(-2) and was due to direct deposit. Modelling reflected the trends, through the differential values of the wash off and absorption coefficients, of what was reported for experimental results.  相似文献   

11.
Foliar absorption of resuspended 90Sr, root uptake and contamination adhering to leaf surfaces (i.e. soil loading) were compared at two Chernobyl-contaminated sites, Chistogalovka and Polesskoye. Although foliar absorption of resuspended 90Sr was quantifiable, its contribution amounted to less than 10% of the plants' total, above-ground contamination. Root uptake was 200 times greater than foliar absorption at the near-field site of Chistogalovka and eight times greater at Polesskoye, where the fallout consisted of the more soluble condensation-type, rather than fuel particles. Strontium's bioavailability exceeded that of 137Cs (analyzed in the same plants) by orders of magnitude when compared using concentration ratios. Simplistic, cumulative effective dose calculations for humans ingesting 90Sr- and 137Cs-contaminated plants revealed that the dose at Chistogalovka was greater from 90Sr (185 mSv vs. 3 mSv from 137Cs), while at Polesskoye the dose from 137Cs (66 mSv) was 30 times greater than from 90Sr (2 mSv).  相似文献   

12.
137Cs and 40K activity concentrations and stable elements have been measured in Clavariadelphus truncatus collected in Mexico. Iron-chelating compounds of siderophore-type was also studied in the species. 137Cs and 40K were determined in soil and mushroom samples with HpGe gamma-ray spectrometry. Macro- and micro-elemental concentrations were determined by XRF and ICP-MS. Siderophore detection was obtained with a colorimetric assay and X-ray diffraction analysis was performed using a Siemens D5000 diffractometer. 137Cs geometric mean concentration in C. truncatus was 26 times higher as compared with other Mexican edible mushroom species, while 40K showed stability. Soil-C. truncatus concentration ratio for 137Cs and other micro-elements such as Cs, Rb and Pb were also higher than other Mexican edible species. The 137Cs committed effective dose due to the ingestion of C. truncatus was 8 x 10(-6) Sv year(-1). The main crystalline structure found in C. truncatus was D-Mannitol.  相似文献   

13.
Adequate radioprotection of the environment requires the identification of biomonitors sensitive to the variation of its radionuclide content. Due to the chemical similarities between calcium and strontium, calcified tissues of mammals are considered to be good 90Sr biomonitors. This work considered Cervus elaphus antlers which, being shed annually, can give information about the importance of radiostrontium contamination in an ecosystem in the time period required for the growth of the antler. The samples were collected at various points of W and SW Spain. The mean value of their 90Sr content was (70 ± 43 (S.D.)) Bq/kg d.w., range (16-218) Bq/kg d.w., and the radionuclide was evenly distributed in the different parts of the antler. There was a good correlation between the antlers’ 90Sr content and the 90Sr deposited in the soil. The antlers’ content of 226Ra (from the natural uranium series) and the contents of some stable elements (Ca, Mg, Sr, and K) were also determined. The values for these stable elements were practically constant in the analyzed samples, and the concentrations measured decreased in the following order:Ca » Mg > K > Sr » 90Sr > 226Ra  相似文献   

14.
Pot experiments were carried out in a greenhouse to investigate how effectively the transfer of radiocesium and radiostrontium from soil to Chinese cabbage could be reduced by applying K and Ca simultaneously to the soil. The sources of these elements were KCl and Ca(OH)(2) at agrochemical grades. Varying dosages of K and Ca were tested for an acid loamy soil treated with a mixed solution of (137)Cs and (85)Sr at two different times - 3 d before sowing and 32 d after sowing. For the pre-sowing deposition, the soil-to-plant transfer of (137)Cs decreased sharply with increasing dosages of K and Ca (K/Ca, g m(-2)) from 4.8/46 up to 22.4/215 but the (85)Sr transfer had the greatest reduction at a dosage of 12.8/123. At this dosage, an about 60% reduction occurred for each radionuclide. Plant growth was inhibited from the dosage of 22.4/215, above which all the plants died young. Both dosages of 4.8/46 and 12.8/123 tested following the growing-time deposition produced around 95% reductions for (137)Cs and 50% reductions for (85)Sr. In the second year after the 12.8/123 applications, the effects for (85)Sr were almost the same as in the first year, whereas those for (137)Cs were diminished slightly for the pre-sowing deposition and markedly for the growing-time deposition. Considerably (K) or slightly (Ca) higher doses than 12.8/123 would be allowable for the maximum TF reductions achievable without a growth inhibition.  相似文献   

15.
A technique for the isolation of thorium (Th), plutonium (Pu), americium (Am), uranium (U) and strontium (Sr) isotopes from various environmental matrices has been adapted from a previously published method specific to water samples (Maxwell, 2006). Separation and isolation of the various elemental fractions from a single sub-sample is possible, thereby eliminating the need for multiple analyses.The technique involves sample dissolution, concentration via calcium phosphate co-precipitation, rapid column extraction using TEVA™, TRU™ and Sr-Spec™ resin cartridges, alpha spectrometry for Th, Pu, U and Am and Cerenkov counting for Sr.Various standard reference materials were analysed and chemical yields are in the range of 70-80% for Th, Am, U and Sr and 50-60% for Pu. Sample sizes of up to 10 L for water, 5 g for dry soil and sediment and 10 g for dry vegetation and seaweed can be processed using this technique.  相似文献   

16.
Transfer factors of 137Cs and 90Sr from soil to trees in arid regions   总被引:2,自引:0,他引:2  
Transfer factors of (137)Cs and (90)Sr from contaminated soil (Aridisol) to olive, apricot trees and grape vines were determined under irrigated field conditions for four successive years. The transfer factors (calculated as Bqkg(-1) dry plant material per Bqkg(-1) dry soil) of both radionuclides varied among tree parts and were highest in olive and apricot fruits. However, the values for (90)Sr were much higher than those for (137)Cs in all plant parts. The geometric mean of the transfer factors in olives, apricots and grapes were 0.007, 0.095 and 0.0023 for (137)Cs and 0.093, 0.13 and 0.08 for (90)Sr, respectively, and were negligible in olive oil for both radionuclides. The transfer factors of both radionuclides were similar to, or in the lower limits of, those obtained in other areas of the world. This could be attributed to differences in soil characteristics: higher pH, lower organic matter, high clay content, and higher exchangeable potassium and calcium.  相似文献   

17.
Studies on the mechanism of (90)Sr migration in soil require many processes to be considered. One of the most important is sorption on the surface of mineral components of the soil. In this study adsorption of (85)Sr on a variety of soil types from different horizons has been investigated. Adsorption isotherms show various affinities of (85)Sr, depending on soil type and to a lesser extent the horizon. An important effect of pH was found with a maximum in the range 5-7. The influence of calcium ions on the extent of adsorption of (85)Sr isotope on soil samples from surface horizons of four sites is presented. Depending on the soil type differing degrees of competitive adsorption of Sr and Ca were observed. Desorption of (85)Sr by distilled water as well as Ca(NO(3))(2) solution was also examined. Both methods resulted in the removal of a considerable proportion of the adsorbed isotope from the soil. Additionally the kinetics of the desorption process were studied.  相似文献   

18.
A total of 260 soil profiles were reported to investigate the fluoride distribution and vertical variation in Guangdong province. The soil fluoride contents followed an approximately lognormal distribution. Although the soil fluoride geometric mean concentration of 407 mg/kg is lower than that of China, its content varied from 87 to 2860 mg/kg. An upper baseline concentration of 688 mg/kg was estimated for surface soils. In A-, B-, and C-horizon soil fluoride spatial distribution presented similar patterns that high fluoride concentration mainly located in limestone, purple shale, and sandshale areas, indicated that soil fluoride spatial distribution was primarily dependent on the regional bedrock properties rather than anthropogenic inputs. From A- to C- horizon soil fluoride geometric mean concentration had an increasing tendency of 407, 448, and 465 mg/kg. This vertical variation was the result of the intensive eluviation under the subtropical hydrothermal condition, and had closely related with soil properties, such as lower organic matters and clay content variations. Moreover, the soil degradation and erosion was also an important pathway of soil fluoride movement, as a result the soil fluoride exported into surface and groundwaters would reach about 4.1x10(4) t year-1 in the study area.  相似文献   

19.
Best estimates for the solid-liquid distribution coefficients (Kd) of radiostrontium and radiocaesium for various soil types, were derived from geometric means (GM) calculated from grouping soils by texture and organic matter content, and also using soil cofactors governing soil–radionuclide interaction. The Kd (Sr) GM for Sand, Loam, Clay and Organic groups were similar, although the value for the Sand group was significantly lower. The Sr cofactor approach, based on the ratios of cation exchange capacity (CEC) to Ca and Mg concentrations in the soil solution, leads to Kd (Sr) GM with a lower variability, from which best estimates could be proposed. The Kd (Cs) GM for Sand and Organic groups differed, although similar values were obtained for Loam and Clay groups. Grouping the Kd (Cs) according to the Radiocaesium Interception Potential (RIP) and the RIP divided by the K concentration in the soil solution also allows to suggest Kd (Cs) best estimates with a lower variability.  相似文献   

20.
We have studied a phosphate rock plant which produces dicalcium phosphate (DCP), used as a source of calcium and phosphorus for domestic animals. A by-product in the manufacturing process is calcium chloride which is used in the oil industry, the food industry and as road-salt. The objectives of our study were to describe the fluxes of radionuclides from the 238U decay series and to estimate the radiation doses to workers at the plant. The radionuclides in the phosphate rock were found to be in secular radioactive equilibrium with 238U, with an average activity concentration of 837 Bq kg-1. Separation and concentration processes were observed at different stages in the plant. Most of the 226Ra was found in the calcium chloride, while the major part of the 238U, about 950 Bq kg-1, was found in the dicalcium phosphate. The annual occupational effective dose to the workers was found to be below the 1 mSv limit recommended by ICRP (1991a) for the public. This study has shown a good example of an important non-nuclear industry with a high input of natural radionuclides with several conceivable pathways to man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号