首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
热活化过硫酸盐降解三氯生   总被引:1,自引:1,他引:0  
基于硫酸根自由基(SO4·-)的高级氧化技术被广泛应用于土壤和地下水污染修复.本研究系统地考察了三氯生在热活化过硫酸盐高级氧化过程中的动力学、中间产物和降解途径.结果表明,提高反应温度或增加过硫酸盐的浓度,可加快三氯生的降解.三氯生的降解符合假一级反应动力学规律,反应活化能(Ea)为142 kJ·mol-1.水中的腐殖酸显著抑制了三氯生的降解,而氯离子(Cl-)对三氯生降解的影响比较复杂.当Cl-浓度为5 μmol·L-1时,三氯生的降解受到了轻微的促进;但是当Cl-的浓度增加至10 μmol·L-1甚至更高时,三氯生的降解反而受到了抑制.通过质谱分析发现三氯生降解过程中生成了4-氯-邻苯二酚、2,4-二氯苯酚和2-氯-5-(2,4-二氯-6-羟基苯氧基)-1,4-苯醌等6种主要中间产物,并由此推测醚键的断裂和酚环羟基化是三氯生的可能降解途径.本研究为基于SO4·-的高级氧化技术去除水中三氯生的应用可行性提供了依据.  相似文献   

2.
李鑫  尹华  罗昊昱  欧阳晓芳  刘航  祝铭韩 《环境科学》2021,42(10):4798-4806
环境中的多溴联苯醚(PBDEs)对人类健康和生态环境存在潜在危害,开发高效、经济和环保的高级氧化体系对其进行有效降解具有重要意义.利用水热法合成的磁性生物炭负载二氧化锰复合材料(α-MnO2/MWB)作为催化剂,有效活化过一硫酸盐(PMS)降解2,2'',4,4''-四溴联苯醚(BDE-47),通过SEM、XRD、FT-IR和BET等手段对材料进行表征分析,同时探究了材料对PMS的催化活化能力.结果表明,α-MnO2/MWB具有最佳的催化性能,在α-MnO2/MWB负载质量比为1:2、催化剂投加量为0.05 g·L-1、PMS浓度为5 mmol·L-1的条件下,对1 mg·L-1 BDE-47的降解率达到94%.溶液初始pH对体系的影响较小,氯离子(Cl-)和腐殖酸(HA)对BDE-47的降解有抑制作用,随其浓度升高抑制作用增强,硝酸根离子(NO3-)和碳酸氢根离子(HCO3-)对降解几乎无影响.通过自由基淬灭实验证明SO4-·和·OH是该体系降解BDE-47的两种关键自由基,其中SO4-·占主导地位.反应前后材料的XPS表征分析表明,Mn和Fe元素的价态转化是活化PMS的主要原因.α-MnO2/MWB经重复利用4次,仍保持着高效的催化性能.  相似文献   

3.
紫外活化过硫酸盐降解磷酸氯喹   总被引:1,自引:1,他引:0  
李阳  许玻珲  邓琳  罗伟 《环境科学》2022,43(9):4597-4607
以抗新型冠状肺炎药物——磷酸氯喹(CQP)为研究对象,考察其在紫外活化过硫酸盐体系(UV/PS)中的降解效果.通过竞争动力学实验,确定了CQP与羟基自由基(HO·)和硫酸根自由基(SO4-·)的二级反应速率常数,同时考察了PS浓度、pH和常见无机阴离子对UV/PS体系中CQP降解的影响,并通过建立动力学模型预测CQP浓度和主要自由基浓度以探究其影响机制.结果表明,UV/PS体系对CQP的降解效果显著优于单一UV、单一太阳光或单一PS体系,在10 min内可降解91.3%的CQP;在pH为6.9的条件下,CQP与HO·和SO4-·的二级反应速率常数分别为8.9×109 L·(mol·s)-1和1.4×1010 L·(mol·s)-1,其中SO4-·是主要活性物种;CQP的降解速率随PS浓度增加而增大,HCO3-和Cl-的加入对UV/PS体系中CQP的去除起到抑制作用,碱性较强的条件不利于CQP的转化.经LC-MS分析,发现CQP在UV/PS体系中主要经过N-脱乙基化、C—N键断裂和抽氢等反应被逐步降解为其他有机中间产物.加大PS浓度和pH可提高其矿化率.此研究可为抗新冠肺炎医药废水的处理提供帮助.  相似文献   

4.
为了研究宿迁市PM2.5中水溶性无机离子的季节特征和来源,于2017年5月至2018年1月在宿迁市水汽通道上的3个监测点位采集了171份PM2.5样品,分析了PM2.5质量浓度以及9种水溶性无机离子含量.结果表明,宿迁市PM2.5中水溶性无机离子的年均浓度为(44.08±34.61)μg ·m-3,占PM2.5质量的41.8%,9种水溶性离子浓度大小排序为ρ(NO3-) > ρ(SO42-) > ρ(NH4+) > ρ(Cl-) > ρ(Na+) > ρ(Ca2+) > ρ(K+) > ρ(F-) > ρ(Mg2+),其中NO3-、SO42-和NH4+是主要的离子组分,占总水溶性无机离子浓度的75.6%.ρ(NO3-)/ρ(SO42-)年均值为1.53±0.88,表明移动污染源对PM2.5的贡献高于固定污染源.水溶性无机离子相关性分析表明,NH4+与NO3-、SO42-可能以(NH42 SO4、NH4HSO4和NH4NO3的形式存在.结合主成分分析,水溶性无机离子主要来源于二次转化、工业源、生物质燃烧和扬尘.PM2.5浓度与相对湿度在冬季呈显著正相关,水汽传输在冬季更容易对PM2.5浓度增长有促进作用.  相似文献   

5.
为研究张掖市城区大气细颗粒物(PM2.5)的污染特征和来源,于2020年9月至2021年7月在张掖市城区的河西学院和湿地博物馆2个采样点进行了PM2.5样品采集,对PM2.5浓度、化学组成(水溶性无机离子、碳质组分和元素)和来源进行分析.结果表明,河西学院和湿地博物馆两个采样点的年均ρ(PM2.5)分别为(73.7±31.8)μg·m-3和(68.1±33.3)μg·m-3,季节浓度均值均呈现春季>冬季>秋季>夏季的变化.河西学院采样点的二次水溶性无机离子(SO42-、NO3-和NH4+)年均值高于湿地博物馆.河西学院采样点的ρ(OC)和ρ(EC)分别为(9.6±5.7)μg·m-3和(2.9±1.6)μg·m-3,湿地博物馆采样点的年均ρ(OC)和ρ(EC)分别为(9.2±5.8)μg·m-3和(2.5±1.3)μg·m-3,河西学院的含碳组分在各季节均高于湿地博物馆.河西学院和湿地博物馆两个采样点的年均二次有机碳(SOC)在OC中的质量分数分别为49.4%和43.7%,表明张掖市存在较为严重的二次污染.河西学院和湿地博物馆两个采样点的元素浓度年均值分别为(6.0±3.5)μg·m-3和(5.8±3.9)μg·m-3,受到人为源的影响,Zn、Ca、Al和Fe等元素浓度水平相对较高.正定矩阵因子分解模型(PMF)结果表明,张掖城区PM2.5的主要贡献源为二次气溶胶(28.0%)、交通源(25.8%)、扬尘源(15.2%)、燃煤源(14.0%)、生物质燃烧和垃圾焚烧源(12.5%)和工艺过程源(4.5%).  相似文献   

6.
党璞  赵亚娟  谢会东  王康康  赵儒霞 《环境科学》2023,44(10):5587-5598
采用水热法成功合成了CuNiFe LDHs/BiO2-x复合光催化剂,并在可见光照射下用于活化过硫酸盐(PMS)降解环丙沙星(CIP).由于光催化和PMS活化的协同作用,CIP的去除率高达88.3%.利用XRD、FT-IR、SEM、XPS和UV-Vis DRS等方法对制备的光催化剂进行了表征.确定了CuNiFe LDHs的最佳负载量,并考察了PMS用量、初始pH值和无机阴离子(Cl-、CO32-和NO3-)对降解的影响.电子顺磁共振和自由基捕获实验表明·OH和h+是CIP降解的主要活性物种,并提出了该体系可能的降解机制.  相似文献   

7.
分别以Zn(CH3COO)2·2H2O、Mn(CH3COO)3·2H2O和Co(CH3COO)2·4H2O为锌源、锰源和钴源,采用溶胶-凝胶自燃烧法成功制备了ZnMnxCo2-xO4x=0~2)复合物,并用X射线衍射和X射线光电子能谱对其进行表征.同时,还研究了Mn/Co物质的量比、催化剂用量及PMS用量对目标污染物降解的影响.结果表明,该复合物可催化活化过一硫酸钾(PMS)降解有机污染物,当催化剂中x=0.8,催化剂投加量为0.2 g·L-1,PMS用量为0.4 mmol·L-1(0.25 g·L-1)时,20 μmol·L-1(10 mg·L-1)罗丹明B(RhB)可在15 min内完全降解.ZnMn0.8Co1.2O4的高催化活性主要归功于Mn3+和Co2+的协同效应.将ZnMnxCo2-xO4-PMS体系用于亚甲基蓝、结晶紫、金橙、双酚A、4-氯酚等其他污染物的降解,也取得了较好的效果.基于电子自旋共振ESR和自由基猝灭实验的结果,可以推测该反应体系中活性物种为硫酸根自由基和羟基自由基.  相似文献   

8.
Fe2+可激活过二硫酸盐(PDS)快速产生硫酸根自由基(SO4-·),但Fe2+会快速转化为低活性的Fe3+,且Fe2+的投加量普遍较大,限制了该体系的广泛应用.采用亚硫酸氢盐(BS)强化微量Fe2+-PDS体系降解水中的扑热息痛(APAP).结果表明,投加BS可促进Fe2+-Fe3+的循环,明显改善Fe2+-PDS体系对APAP的降解效果,在最优条件下(PDS=0.6 mmol·L-1;BS=0.4 mmol·L-1;Fe2+=10 μmol·L-1;pH=4)下,APAP (4 μmol·L-1)可在180 s内被完全降解.同时,APAP的降解速率随BS (0~0.6 mmol·L-1)和PDS (0.2~1.5 mmol·L-1)浓度的增大而升高,适量提高Fe2+浓度可促进APAP的降解,但增加BS的投加次数对降解速率影响不大.HCO3-与HPO42-明显抑制了体系降解APAP的效率,Cl-和NO3-有轻微抑制作用,腐殖酸(HA)则影响不大.通过淬灭实验和电子顺磁共振波谱检测,证实了体系中SO4-·、·OH和单线态氧的产生,其中SO4-·是降解APAP的主要活性物种.利用三维荧光光谱技术对APAP降解过程进行了表征,表明APAP降解产物具有荧光特性.此外,还鉴定出5种中间产物,并提出了3种可能的降解途径.体系在实际水体中的效能低于超纯水中的表现,但延长反应时间可明显增强降解效果,表明BS-Fe2+-PDS体系是一种有前景的有机污染物降解方法.  相似文献   

9.
UV/NO3-光化学降解水中的磺胺甲恶唑   总被引:1,自引:0,他引:1  
本文研究了UV/NO3-体系对水中磺胺甲恶唑(SMX)的降解;考察了NO3-用量、pH值、SMX初始浓度、水体成分中常见的无机阴离子(Cl-、SO42-和HCO3-)和天然有机物(NOM)对SMX去除的影响;最后探讨了SMX在该体系中的降解产物和转化机理.结果表明:相比于单独UV,UV/NO3-对SMX的去除效果更优,这可能归因于UV激发NO3-产生的羟基自由基(HO·),通过加入HO·淬灭剂甲醇,有力地证明了体系中HO·的存在及其对SMX的降解作用.SMX在UV/NO3-体系中的降解符合准一级反应动力学.SMX的去除效率随着NO3-浓度的增加而逐渐提高,随着其初始浓度的增大而减小.溶液pH值对UV/NO3-降解SMX的影响显著,SMX去除效率表现为酸性>中性>碱性.向UV/NO3-体系中加入不同浓度的Cl-和SO42-对SMX的降解基本没有影响;HCO3-对SMX的去除有显著的促进作用,这可能归因于HO·同HCO3-反应产生的碳酸根自由基(CO3·-);NOM的存在会抑制SMX的降解,且NOM浓度越高,抑制越明显.在UV/NO3-降解SMX的反应中,根据检出的5种产物,提出SMX可能的转化机理包括4种不同的反应路径,分别为断键反应、脱氨羟基化、羟基化和亚硝化.  相似文献   

10.
制备了以KNbO3为载体材料的Co(OH)2复合材料并对其进行了详细的表征,分析了材料的组成成分、组成形态进而确定了其为核壳结构形貌的KNbO3@Co(OH)2.利用合成的样品作为催化剂活化过一硫酸盐(peroxymonosulfate,PMS)来降解帕珠沙星(pazufloxacin,PZF),结果表明制备的催化剂对PZF的去除效率显著增加.讨论了不同初始PMS剂量对降解效率的影响,发现随着PMS增加可活化生成更多的硫酸根自由基(sulfate radicals,SO4·-)和羟基自由基(hydroxyl radicals,HO·)来降解PZF,但继续增大PMS用量降解效率未见明显提升.酸性和中性pH值条件下利于反应活化PMS降解PZF,而碱性体系减缓反应,甚至强碱体系更易形成Co(OH)2沉淀不利于反应体系中活性组分CoOH+的形成,大大抑制了催化性能.此外,在体系中加入淬灭剂叔丁醇(tert-Butanol,TBA)或者乙醇(ethanol,ETOH)进行自由基的淬灭实验,结果表明SO4·-自由基为体系降解PZF过程中主要贡献的自由基,而HO·自由基的贡献较少.催化剂具有较好的稳定性5次循环之后仍能在10 min之内完全去除PZF.本研究提出了新的思路为制备其他载体的Co(OH)2核壳结构提供参考依据,同时将该催化剂结合高级氧化技术应用到水体新兴有机污染物净化领域具有很好的应用前景.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

16.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

19.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号