首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The architecture of vertical aerial orb webs may be affected by spider size and gravity or by the available web space, in addition to phylogenetic and/or developmental factors. Vertical orb web asymmetry measured by hub displacement has been shown to increase in bigger and heavier spiders; however, previous studies have mostly focused on adult and subadult spiders or on several size classes with measured size parameters but no mass. Both estimations are suboptimal because (1) adult orb web spiders may not invest heavily in optimal web construction, whereas juveniles do; (2) size class/developmental stage is difficult to estimate in the field and is thus subjective, and (3) mass scales differently to size and is therefore more important in predicting aerial foraging success due to gravity. We studied vertical web asymmetry in a giant orb web spider, Nephila pilipes, across a wide range of size classes/developmental stages and tested the hypothesis that vertical web asymmetry (measured as hub displacement) is affected by gravity. On a sample of 100 webs, we found that hubs were more displaced in heavier and larger juveniles and that spider mass explained vertical web asymmetry better than other measures of spider size (carapace and leg lengths, developmental stage). Quantifying web shape via the ladder index suggested that, unlike in other nephilid taxa, growing Nephila orbs do not become vertically elongated. We conclude that the ontogenetic pattern of progressive vertical web asymmetry in Nephila can be explained by optimal foraging due to gravity, to which the opposing selective force may be high web-building costs in the lower orb. Recent literature finds little support for alternative explanations of ontogenetic orb web allometry such as the size limitation hypothesis and the biogenetic law.  相似文献   

2.
Animals obtain information from past foraging experience to adjust their foraging activity according to their environment. The ability of spiders to obtain information from unsuccessful predation experiences was investigated by examining the effects on web building, a significant foraging investment, of prey detection without successful capture in the orb-web spider Cyclosa octotuberculata. Four treatments were employed: (1) successful capture and feeding: one syrphid fly was allowed to be captured and consumed by the spider on the web; (2) single prey-item detection: a syrphid fly was placed on the web to lure the spider, but was removed before capture; (3) five prey-item detection: above prey-item detection stimulus was given five times; and, (4) control: neither prey nor feeding on the web. While control spiders decreased the total thread length and capture area of their webs, prey-item detection spiders in both conditions increased them, indicating that the spider obtained information from unsuccessful predation experience to adjust their foraging investment. The fed spiders exhibited a significantly greater increase than the prey-detection-only spiders, suggesting that prey detection alone and prey detection with consumption had different informational effects. Total thread length did not differ between single and five prey-item detection spiders, but distance between two adjacent sticky spirals increased only in the former spiders, possibly because five times unsuccessful predations prevented spiders to reduce web stickiness. It suggests that the spider changed web morphology according to the number of prey detection.  相似文献   

3.
Leg loss is a common phenomenon in spiders, and according to the species 5% to 40% of the adults can present at least one missing leg. There is no possibility of regeneration after adult moult and the animal must manage with its missing appendages until its death. With the loss of one or more legs, female orb-weaving spiders can be penalized twice: firstly, because the legs are necessary for web construction and secondly, the legs are essential for the control of the prey after its interception by the web. During development, spiders may be also penalized because regeneration has energetic costs that take away resources for survival, growth and reproduction. All these consequences should influence negatively the development of the spider and thus its fitness. We investigated the impact of leg loss in the orb-weaving spider, Zygiella x-notata by studying its frequency in a natural population and web building and prey capture behaviours in laboratory. In field populations, 9.5% to 13%, of the adult females presented the loss of one or more legs; the majority of individuals had lost only one leg (in 48% of cases, a first one). Leg loss seems to affect all the adult spiders, as there is no difference of mass between intact spiders and those with missing leg. Data obtained with laboratory-reared spiders, showed that the loss of legs due to the moult is rare (less than 1%). Considering changes in web design, spiders with missing legs decreased their silk investment, increased the distance between spiral turns but did not change the capture surface of the web. Under our laboratory experimental conditions, spiders with one or two lost legs did not present any difference in prey capture efficiency. In laboratory conditions, spiders with lost leg(s) did not show any difference in egg sac production or in longevity (adult lifespan) compared to intact spiders.  相似文献   

4.
Morphological, physiological and behavioural variation with body size (i.e. scaling) may affect costs of living in a particular environment for insects and, ultimately, pollination or foraging success. However, few studies have directly assessed the scaling of these traits at the species level. Using two similar-sized pollinator species (the hawkmoth Macroglossum trochilus and the fly Moegistorhynchus longirostrus), we compare intraspecific scaling relationships of resting metabolic rate (RMR), foraging rate (FR) and wing loading (WL) to address this paucity of data. Scaling of RMR was similar for both taxa although the intercepts for the relationships differed. However, these two species showed variation in WL scaling relationships and fundamentally different FR scaling. For M. longirostrus, FR scaling was positive but non-significantly related to body mass while for M. trochilus FR scaling was negative. This suggests that variation in FR and WL, but not RMR scaling, among these flies and hawkmoths may impose significant energetic costs which could affect animal–plant interactions in the wild.  相似文献   

5.
Cyrtarachne is an orb-weaving spider belonging to the subfamily Cyrtarachninae (Araneidae) which includes triangular-web-building Pasilobus and bolas spiders. The Cyrtarachninae is a group of spiders specialized in catching moths, which is thought to have evolved from ordinary orb-weaving araneids. Although the web-building time of nocturnal spiders is in general related to the time of sunset, anecdotal evidence has suggested variability of web-building time in Cyrtarachne and its closely related genera. This study has examined the effects of temperature, humidity, moonlight intensity, and prey (moths) availability on web-building time of Cyrtarachne bufo, Cyrtarachne akirai, and Cyrtarachne nagasakiensis. Generalized linear mixed model (GLMM) have revealed that humidity, and not prey availability, was the essential variable that explained the daily variability of web-building time. Experiments measuring thread stickiness under different humidities showed that, although the thread of Cyrtarachne was found to have strong stickiness under high humidity, low humidity caused a marked decrease of thread stickiness. By contrast, no obvious change in stickiness was seen in an ordinary orb-weaving spider, Larinia argiopiformis. These findings suggest that Cyrtarachne adjusts its web-building time to favorable conditions of high humidity maintaining strong stickiness, which enables the threads to work efficiently for capturing prey.  相似文献   

6.
Most orb-web spiders face downwards in the web. A downward orientation has been proposed to be the optimal strategy because spiders run faster downwards and thus can catch prey quicker. Consequently, orb-web spiders also extend their web in the lower part, leading to top-down web asymmetry. Since the majority of orb-web spiders face downwards, it has been difficult to test the effect of orientation on prey capture and web asymmetry. In this study, we explored the influence of reverse orientation on foraging efficiency and web asymmetry in Verrucosa arenata, a neotropical orb-web spider that faces upwards in the web. We show that reverse orientation does not imply reverse web asymmetry in this species. V. arenata spiders captured more prey in the lower part of the web but more prey per area on the upper part. The average running speeds of spiders did not differ between upward and downward running, but heavier spiders took longer to capture prey while running upwards. We discuss these findings in the context of foraging efficiency and web asymmetry.  相似文献   

7.
The Science of Nature - Gravity is very important for many organisms, including web-building spiders. Probably the best approach to study the relevance of gravity on organisms is to bring them to...  相似文献   

8.
Orb-web building spiders (Araneae: Araneoidea, Uloboridae) can be considered as territorial central place foragers. In territorial central place foragers, the optimal foraging arena is circular, with the forager sitting in its centre. In orb webs, the spider’s orientation (head up or head down) whilst waiting for prey on the hub of its web and the downwards–upwards asymmetry of its running speeds are the probable causes for the observed deviation of the hub from the web’s centre. Here, we present an analytical model and a more refined simulation model to analyse the relationships amongst the spider’s running speeds, its orientation whilst waiting for prey and the vertical asymmetry of orb webs. The results of our models suggest that (a) waiting for prey head down is generally favourable because it allows the spider to reach the prey in its web on average quicker than spiders waiting head up, (b) the downwards–upwards running speed asymmetry, together with the head-down orientation of most spiders, are likely causes for the observed vertical asymmetry of orb webs, (c) waiting head up can be advantageous for spiders whose downwards–upwards running speed asymmetry is small and who experience high prey tumbling rates and (d) spiders waiting head up should place their hub lower than similar spiders waiting head down.  相似文献   

9.
Finding and attracting mates can impose costs on males in terms of increased encounters with, and attraction of, predators. To decrease the likelihood of predation, males may modify mate-acquisition efforts in two main ways: they may reduce mate-searching efforts or they may reduce mate-attraction efforts. The specific behavior that males change in the presence of predator cues should depend upon the nature of risk imposed by the type of predator present in the environment. For example, sit-and-wait predators impose greater costs to males moving in search of mates. Here, we test whether cues of the presence of a sit-and-wait predator lead to a reduction in mate-searching but not mate-acquisition behavior. We used a member of the Enchenopa binotata complex of treehoppers—a clade of vibrationally communicating insects in which males fly in search of mates and produce mate-attraction signals when they land on plant stems. We tested for changes in mate-searching and signaling behaviors when silk from a web-building spider was present or absent. We found that males delayed flight when spider silk was present but only if they were actively searching for mates. These results suggest that males have been selected to reduce predation risk by adjusting how they move about their environment according to the cues of sit-and-wait predators.  相似文献   

10.
Individual variation is a ubiquitous and important factor that affects ecological dynamics. This study examined individual variation in the nest-use pattern of the jumping spider Phidippus audax. Although the jumping spider is a diurnal species, field observations in this study revealed that the majority of individuals remained in their nests during the day. An accompanying examination of the hunger level of the spiders revealed that spiders that remained in nests were more starved than those observed outside nests. If spiders actively forage when they are starved, as has been suggested by previous studies, one would expect to see the opposite trend (i.e., spiders that remained in nests are more satiated). Thus, the pattern observed in the field contradicts the known behavioral pattern of the spiders. An individual-based model was used to investigate the behavioral mechanism of the spider and the discrepancy found in the observations. A basic assumption of the model is that spiders possess distinct inactive and active phases (biphasic activity pattern), and transitions between the two phases are regulated by the hunger level of the spider. Data from a laboratory experiment were used to examine the assumptions of the model partially. The model was able to capture patterns observed in the data, suggesting that the pattern of transitions in biphasic activity is an important trait of the foraging behavior of the jumping spider.  相似文献   

11.
The origin of viscid capture silk in orb webs, from cribellate silk-spinning ancestors, is a key innovation correlated with significant diversification of web-building spiders. Ancestral cribellate silk consists of dry nanofibrils surrounding a stiff, axial fiber that adheres to prey through van der Waals interactions, capillary forces, and physical entanglement. In contrast, viscid silk uses chemically adhesive aqueous glue coated onto a highly compliant and extensible flagelliform core silk. The extensibility of the flagelliform fiber accounts for half of the total work of adhesion for viscid silk and is enabled by water in the aqueous coating. Recent cDNA libraries revealed the expression of flagelliform silk proteins in cribellate orb-weaving spiders. We hypothesized that the presence of flagelliform proteins in cribellate silk could have allowed for a gradual shift in mechanical performance of cribellate axial silk, whose effect was masked by the dry nature of its adhesive. We measured supercontraction and mechanical performance of cribellate axial silk, in wet and dry states, for two species of cribellate orb web-weaving spiders to see if water enabled flagelliform silk-like performance. We found that compliance and extensibility of wet cribellate silk increased compared to dry state as expected. However, when compared to other silk types, the response to water was more similar to other web silks, like major and minor ampullate silk, than to viscid silk. These findings support the punctuated evolution of viscid silk mechanical performance.  相似文献   

12.
Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.  相似文献   

13.
The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.  相似文献   

14.
Small mammals appear to be less vulnerable to extinction than large species, but the underlying reasons are poorly understood. Here, we provide evidence that almost all (93.5%) of 61 recently extinct mammal species were homeothermic, maintaining a constant high body temperature and thus energy expenditure, which demands a high intake of food, long foraging times, and thus exposure to predators. In contrast, only 6.5% of extinct mammals were likely heterothermic and employed multi-day torpor (hibernation) or daily torpor, even though torpor is widespread within more than half of all mammalian orders. Torpor is characterized by substantial reductions of body temperature and energy expenditure and enhances survival during adverse conditions by minimizing food and water requirements, and consequently reduces foraging requirements and exposure to predators. Moreover, because life span is generally longer in heterothermic mammals than in related homeotherms, heterotherms can employ a ‘sit-and-wait’ strategy to withstand adverse periods and then repopulate when circumstances improve. Thus, torpor is a crucial but hitherto unappreciated attribute of small mammals for avoiding extinction. Many opportunistic heterothermic species, because of their plastic energetic requirements, may also stand a better chance of future survival than homeothermic species in the face of greater climatic extremes and changes in environmental conditions caused by global warming.  相似文献   

15.
Although filial cannibalism (eating one’s own offspring) occurs in numerous species, including several teleost fishes, its adaptive value is still not well understood. One often-discussed explanation is that individuals enhance their mass and body condition by consuming part of their eggs. However, evidence for this assumption is scarce thus far. In this study, male three-spined sticklebacks (Gasterosteus aculeatus), a species with paternal care, were allowed to care for a batch of eggs or for an empty nest under food-deprived conditions. All brood-caring males cannibalised at least part of their eggs and thus preserved their initial mass and body condition. Furthermore, mass as well as body condition was significant positively correlated with the number of cannibalised eggs. In contrast, empty-nest males that had no possibility to cannibalise eggs significantly lost mass and body condition. This is, to our knowledge, the first experimentally documented evidence that mass as well as body condition were preserved by filial cannibalism.  相似文献   

16.
Testosterone mediates male reproductive trade-offs in vertebrates including mammals. In male edible dormice (Glis glis), reproductivity linked to high levels of testosterone reduces their ability to express torpor, which may be expected to dramatically increase thermoregulatory costs. Aims of this study were therefore to analyse behavioural and physiological consequences of reproductive activity in male edible dormice under ecologically and evolutionary relevant conditions in the field. As we frequently encountered sleeping groups in the field, we hypothesized that social thermoregulation should be an important measure to reduce energy expenditure especially in sexually active male edible dormice. Our results revealed that the occurrence of sleeping groups was negatively influenced by male body mass but not by reproductive status or ambient temperature. In reproductive as in non-reproductive males, the number of individuals huddling together was negatively influenced by their body mass. Thus in general males with a high body mass were sitting in smaller groups than males with a low body mass. However, in reproductive males group size was further negatively affected by ambient temperature and positively by testes size. Thus breeders formed larger sleeping groups at lower ambient temperatures and males with larger testes were found in larger groups than males with smaller testes. Measurements of oxygen consumption demonstrated that grouping behaviour represents an efficient strategy to reduce energy expenditure in edible dormice as it reduced energy requirements by almost 40%. In summary, results of this field study showcase how sexually active male edible dormice may, through behavioural adjustment, counterbalance high thermoregulatory costs associated with reproductive activity.  相似文献   

17.
Energy demands of gestation and lactation represent a severe challenge for small mammals. Therefore, additional energetic burdens may compromise successful breeding. In small rodents, food restriction, cold exposure (also in combination) and wheel running to obtain food have been shown to diminish reproductive outcome. Although exhibited responses such as lower incidence of pregnancy, extended lactation periods and maternal infanticide were species dependent, their common function is to adjust energetic costs to the metabolic state reflecting the trade-off between maternal investment and self-maintenance. In the present study, we sought to examine whether voluntary exercise affects reproduction in Djungarian hamsters (Phodopus sungorus), which are known for their high motivation to run in a wheel. Voluntary exercise resulted in two different effects on reproduction; in addition to increased infanticide and cannibalism, which was evident across all experiments, the results of one experiment provided evidence that free access to a running wheel may prevent successful pregnancy. It seems likely that the impact of voluntary wheel running on reproduction was associated with a reduction of internal energy resources evoked by extensive exercise. Since the hamsters were neither food-restricted nor forced to run in the present study, an energetic deficit as reason for infanticide in exercising dams would emphasise the particularly high motivation to run in a wheel.  相似文献   

18.
Polistes wasps engage in many behavioral interactions. Although there has been debate over the meaning of these interactions, these stereotypical behaviors can be used to determine a colony’s linear dominance hierarchy. Due to the implicit relationship between behavioral and reproductive dominance, behavioral interactions are commonly used to distinguish the reproductively dominant alpha foundress from the beta foundress. It has been suggested that in order to maintain reproductive control, the alpha foundress is forced to remain at a physiologically constrained activity limit. This, in turn, may allow aggressive interactions to be used as determinants influencing reproductive partitioning between cooperating individuals. Energetic costs can place important limitations on behavior, but the energetic cost of the interactions has not previously been measured. To address this, we measured the CO2 production of 19 non-nestmate pairs displaying interactive and noninteractive behavior. The rate of energy used during interaction behavior was positively associated with published rankings of aggression. However, our results indicate that interactions are not very energetically costly in Polistes, particularly when compared to the likely cost of foraging. These data suggest that maintaining reproductive dominance is not very energetically expensive for the dominant and that the dominant foundress expends energy at a lower rate than the subordinate foundress. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The aim of this study was to determine the relative effects of landscape scale management intensity, agroecosystem type, local management intensity and edges on diversity patterns of functional groups of plants, carabid beetles, spiders and grasshoppers. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional mown meadows. Within fields, plants were surveyed in the edge and in the interior. Carabid beetles and spiders were captured by funnel traps, while grasshoppers were sweep-netted in the meadows. Diversity patterns of study organisms were affected both by local variables (local management, agroecosystem type and within-field position) and by landscape scale management intensity. Species richness of grasses, presumably because of sowing low-diversity mixtures, and hunting spiders decreased with percent cover of IAA. Meadows differed from wheat fields in that they had higher species richness of forbs and grasses, as well as higher densities of hunting spiders. In contrast, more carabid individuals, especially of non-carnivore species, were captured in wheat fields. In field edges with their reduced management intensity and increased immigration, species richness of plants, carabids and spiders was higher than in the interiors regardless of agroecosystem type and management. Organic management enhanced forb richness and cover in both agroecosystem types. Organic management also increased grass cover in wheat fields, but not in meadows, and promoted species richness of non-carnivore carabids and hunting spiders, but not grasshoppers. The results show that agri-environmental management needs to be targeted to the agroecosystem's field size, because higher edge area led to higher species richness. Organic management affected several functional groups positively (forbs, non-carnivore carabids, hunting spiders), while lower landscape scale management intensity only increased species richness of grasses and spiders. The great differences in responses of functional groups to local cereal and grassland as well as landscape management suggest implementing more scale and group specific targets for agri-environmental schemes to improve their efficiency.  相似文献   

20.
Behavioural ecologists attempt to predict fitness in birds from estimates of body condition and immune capacity. We investigated how the stresses associated with capture, confinement and captive-rearing of wild zebra finches (Taeniopygia guttata) affected different elements of the immune system and body condition. Wild birds had higher heterophil:lymphocyte ratios and total leucocyte counts than aviary birds, presumably an outcome of mounting specific resistance to pathogens, but this response diminished significantly within 10 days of confinement. Wild birds had lower phytohaemagglutinin-A (PHA) responses than their aviary-bred counterparts possibly because energetic costs limited a general resistance response. Wild birds were heavier and had higher haematocrits than their aviary counterparts, but had less fat, although just 10 days of captivity significantly increased fat levels. Measures of body condition were of limited use for predicting immune responsiveness. We conclude that the different elements of the immune system and body condition respond independently, and often unpredictably, to many ecological and behavioural stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号