首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
So LM  Chu LM  Wong PK 《Chemosphere》2003,52(9):1499-1503
Bacteria resistant to Cu2+, Ni2+ or Zn2+ were isolated from the rhizosphere of water hyacinth (Eichhornia crassipes (Mart.)) and their metal ion removal capacities (RCs) were determined. The Ni2+ and Zn2+ RCs of the respective metal ion-resistant bacteria were less than 4.1 mg g(-1), while one of the Cu2+-resistant bacteria (Strain CU-1) showed a significant high Cu2+ RC of 10.6 mg g(-1). The effect of inoculating water hyacinth with Strain CU-1 on its Cu2+ RC was further studied. Water hyacinths were treated with an antibiotic, oxytetracycline (OTC), to remove most rhizospheric bacteria of plant roots. Inoculation of Strain CU-1 increased the Cu2+ RC of the plant root by 1.91 (OTC-treated) and 1.56 (OTC-untreated) folds respectively when compared with the control. Results also showed that Strain CU-1 colonized onto the plant root and led to the increase of Cu2+ RC of the roots of water hyacinth.  相似文献   

2.
Experiments were carried out to investigate the ability of water hyacinth (Eichhornia crassipes) to remove five heavy metals (cadmium, chromium, copper, nickel, and lead) commonly found in leachate. All experiments were conducted in batch reactors in a greenhouse. It was found that living biomass of water hyacinth was a good accumulator for copper, chromium, and cadmium. The plants accumulated copper, chromium, and cadmium up to 0.96, 0.83, and 0.50%, respectively, of their dry root mass. However, lead and nickel were poorly accumulated in water hyacinth. Also, nonliving biomass of water hyacinth dry roots showed ability to accumulate all metals, except Cr(VI), which was added in anionic form. The highest total metal sorption by nonliving dry water hyacinth roots was found to take place at pH 6.4. The current research demonstrates the potential of using water hyacinth for the treatment of landfill leachate containing heavy metals.  相似文献   

3.
At a fixed Cd2+ concentration water hyacinth (Eichhornia crassipes) plants with greater root mass (dry weight) take up more metal ions as a function of time, and more metal ions are taken up by a plant as the solution volume is increased. Experiments in which several different metal ion complexers were present suggest that (1) the roots possess sites which initially reversibly bind free Cd2+, (2) some added complexers can compete with these root sites for free Cd2+, and (3) with time Cd2+ bound to the roots is translocated into into the root tissues effectively removing it from the equilibrium processes in solution. Many metal ions are taken up by the plant but only the micronutrient Zn2+ competes well with Cd2+ for uptake. Thus, there may be binding sites on the roots for specific metal ions.  相似文献   

4.
The aim of the current study was to investigate the potential of an aquatic plant, the water hyacinth (Eichhornia crassipes) devoid rhizospheric bacteria, to reduce naphthalene (a polyaromatic hydrocarbon) present in wastewater and wetlands.The capability of sterile water hyacinth plants to remove naphthalene from water and wastewater was studied in batch systems. Water hyacinths enhance the removal of pollutants through their consumption as nutrients and also through microbial activity of their rhizospheric bacteria.Experimental kinetics of naphthalene removal by water hyacinth coupled with natural rhizospheric bacteria was 100% after 9 d. Plants, decoupled of rhizospheric bacteria, reduced naphthalene concentration up to 45% during 7 d. Additionally, naphthalene uptake by water hyacinth revealed a biphasic behavior: a rapid first phase completed after 2.5 h, and a second, considerably slower rate, phase (2.5-225 h). In conclusion, water hyacinth devoid rhizospheric bacteria reduced significantly naphthalene concentration in water, revealing a considerable plant contribution in the biodegradation process of this pollutant.  相似文献   

5.
Tissue cadmium levels and the amount of metal associated with the various protein fractions thereof have been determined in specimens of Mytilus edulis exposed to cadmium in the water and by direct injection. In addition to metallothionein, heavy-molecular weight proteins are involved in cadmium retention.  相似文献   

6.
To study the bioconcentration of cadmium in water hyacinth, the plants were exposed to water containing 2 microg Cd2+/ml for extended periods of time. Three strains from several exposures during a 30-day period were sampled for the analyses of cadmium and thiol group. The data showed that the plant concentrates cadmium mainly in the roots and that the cadmium uptake is proportional to the increase of the thiol group content. The latter suggests the possibility of using the thiol group content to assess the bioconcentration of heavy metal ions in water hyacinth and as a general parameter for monitoring the heavy metal pollution of water. A simple two-compartmental model was used to simulate the kinetics of cadmium uptake. The calculated bioconcentration factor matches the one derived directly from experimental data, indicating the adequacy of the model.  相似文献   

7.
A mixture of ten metals (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se and Zn) at the Great Lakes Water Quality Objective levels was found to reduce the primary productivity of four cultured freshwater algae (Scenedesmus, Chlorella, Anabaena and Navicula) as well as natural phytoplankton from Lake Ontario water. The metal mixture also caused a reduction in the reproduction and transport of an amino acid analogue (α-aminoisobutyric acid) by Ankistrodesmus. The depuration and exchange of the amino acid analogue were not affected by the metal mixture. The nitrogenase activity of Anabaena was, however, reduced in the presence of the metal mixture.  相似文献   

8.
Mercury uptake and accumulation by four species of aquatic plants   总被引:10,自引:0,他引:10  
The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.  相似文献   

9.
Tadeusz Skowroński 《Chemosphere》1984,13(12):1385-1389
The uptake of cadmium by the green alga Stichococcus bacillaris was studied. It was found that about 80% of the uptake was due to adsorption, and about 20% to energy-dependent transport. Investigations on the relationship between the sorption of cadmium and the equilibrium concentration (Ce) revealed that the alga cells are saturated at Ce20mg Cd/1.  相似文献   

10.
The effect of cadmium and of zinc on the rate of uptake of a pentose sugar xylose and an aminoacid tryptophan by the intestine of a teleost fish, Heteropneustesfossilis was studied under two experimental conditions. In the first, four concentrations of cadmium or zinc (1.0 mM, 0.1 mM, 0.01 mM and 0.001 mM) mixed with the nutrient solution were filled in the intestinal sacs, and the rate of absorption was recorded after 1 h at 23°C. In the second experiment fish were exposed by bath to a sublethal concentration of cadmium (0.26 mg/1) or zinc (4 mg/1) for 15 and 30 days and the rate of absorption of the two nutrients was measured. The activity of intestinal Na+, K+ activated adenosine triphosphatase was also assayed. The two heavy metals at all the four concentrations decreased the rate of intestinal transport of nutrients. Increase in the concentration of each of the heavy metals decreased the uptake of nutrients, but the decreases were not linear. The rate of intestinal absorption of the two nutrients was also reduced by exposure of fish to the heavy metals invivo. The activity of Na+, K+ ATPase decreased invitro with all four concentrations of cadmium and zinc and was diminished in fish exposed for 15 and 30 days. Of the two heavy metals, cadmium was more effective in reducing the rate of transport of xylose and tryptophan.  相似文献   

11.
Brian L. Worobey 《Chemosphere》1984,13(10):1103-1111
Three soils of varying organic matter (OM) concentrations (0, 1.7 and 57%) were treated with 3,3′4,4′-tetrachlorazobenzene (TCAB) at the 25 ppm level. Germinated soybeans(Glycinemax (L.) Merr.) were planted in the treated soils, along with controls, and grown for 12 days. The shoots, roots and soil were air-dried and analyzed for TCAB and 3,3′,4,4′-tetrachloroazoxybenzene (TCAOB). TCAB appears to translocate from the treated soil into the plant shoots and roots. Residue levels varied with the percentage organic matter of each soil; levels as high as 58.4 ppm were identified in roots of soybeans grown in 1.7% OM soil and 0.620 ppm in the shoots from 0% OM soil. TCAOB was identified in soil and root extracts with the highest levels in soybean roots grown in 0% OM soil, 0.317 ppm. Residues of TCAB and TCAOB decreased in soil and root and shoot tissues as percentage OM increased. Bound residues of TCAB were released from roots grown in 0% OM soil by refluxing with boron trifluoride methanol (BF3CH3OH).  相似文献   

12.
Invasions of water bodies by floating vegetation, including water hyacinth (Eichhornia crassipes), are a huge global problem for fisheries, hydropower generation, and transportation. We analyzed floating plant coverage on 20 reservoirs across the world’s tropics and subtropics, using > 30 year time-series of LANDSAT remote-sensing imagery. Despite decades of costly weed control, floating invasion severity is increasing. Floating plant coverage correlates with expanding urban land cover in catchments, implicating urban nutrient sources as plausible drivers. Floating vegetation invasions have undeniable societal costs, but also provide benefits. Water hyacinths efficiently absorb nutrients from eutrophic waters, mitigating nutrient pollution problems. When washed up on shores, plants may become compost, increasing soil fertility. The biomass is increasingly used as a renewable biofuel. We propose a more nuanced perspective on these invasions moving away from futile eradication attempts towards an ecosystem management strategy that minimizes negative impacts while integrating potential social and environmental benefits.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01360-6) contains supplementary material, which is available to authorized users.  相似文献   

13.
Accumulation of 14C labelled bis(tributyltin) oxide (TBTO) by the mud crab, Rhithropanopeusharrisii, was determined through short-term exposure to labelled water and food. The potential for trophic accumulation during chronic low level exposure is emphasized.  相似文献   

14.
A.J.M. Baker 《Chemosphere》1984,13(4):585-589
This paper reports results of a study on cadmium tolerance in the grass Holcuslanatus which suggest that tolerance is inducible and can be lost in transplanting plants to uncontaminated soils.  相似文献   

15.
Y. Ku  G. Alvarez 《Chemosphere》1982,11(1):41-46
N-Phenyl-β-naphthylamine, a widely used rubber antioxidant and antiozonant, was biotransformed into β-naphthylamine, a potent carcinogen, in a laboratory sewage sludge system. β-Naphthylamine appeared to accumulate in the aqueous phase of the system while the undegraded parent compound appeared to be associated with the sludge solids.  相似文献   

16.
Aquatic arsenic: phytoremediation using floating macrophytes   总被引:3,自引:0,他引:3  
Rahman MA  Hasegawa H 《Chemosphere》2011,83(5):633-646
Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes.  相似文献   

17.
J.H. Canton  W. Slooff 《Chemosphere》1982,11(9):891-907
The toxicity of nitrolotriacetic acid (NTA), citrex-S-5, sodium alluminium silicate (NAS), carboxymethyloxysuccinate (CMOS), linear alkylbenzene sulfonate (LAS) and soap was examined using bacteria (Pseudomonasfluorescens), algae (Chlorellavulgaris and Microcystisaeruginosa), crustaceans (Daphniamagna), insects (Aedesaegypti), fishes (Poeciliareticulata and Oryziaslatipes) and amphibians (Xenopuslaevis). The biodegradability of NTA, citrex-S-5, CMOS and LAS was studied in the OECD-test.The acute toxicity of the compounds differed largely with the organisms tested (up to a factor 1,000). Based on the results of the short-term toxicity tests (with all test organisms) and the long-term toxicity tests (with Daphniamagna and in case of LAS also with Poeciliareticulata) the following no-observed-effect concentrations (NOEC) could be derived: LAS 3.2 mg/1; NAS and soap 10 mg/1; CMOS 32 mg/1; NTA 100 mg/1 and citrex-S-5 320 mg/1. However, testing different samples of one test compound may result in marked differences in toxicity (e.g. NAS: a factor 32).All compounds tested showed to be biodegradable as the percentage DOC decreased more than 80% within four weeks. CMOS biodegraded quickly, whereas citrex-S-5 and LAS showed a somewhat slower rate of degradation. In contrast to the other compounds NTA required an adaptation period of 1 week.  相似文献   

18.
The plant–microorganism combinations may contribute to the success of phytoextraction of heavy metal-polluted soil. The purpose of this study was to investigate the effects of cadmium (Cd) soil concentration on selected physiological parameters of the poplar clone “I-214” inoculated at root level with a strain (BT4) of Pseudomonas fluorescens and a commercial product based on microbial consortia (Micosat F Fito®). Plants were subjected to Cd treatment of 40 mg kg?1 in greenhouse. The effects of plant–microbe interactions, plant growth, leaf physiology, and microbial activity were periodically monitored. Metal concentration and translocation factors in plant tissues proved enhanced Cd uptake in roots of plants inoculated with P. fluorescens and transfer to shoots in plants inoculated with Micosat F Fito®, suggesting a promising strategy for using microbes in support of Cd uptake. Plant–microbe integration increased total removal of Cd, without interfering with plant growth, while improving the photosynthetic capacity. Two major mechanisms of metal phytoextraction inducted by microbial inoculation may be suggested: improved Cd accumulation in roots inoculated with P. fluorescens, implying phytostabilization prospective and high Cd transfer to shoots of inoculated plants, outlining enhanced metal translocation.  相似文献   

19.
Improved gas-liquid chromatography techniques were used to evaluate the effects of EDUa on soluble leaf carbohydrates in Phaseolus vulgaris L. ‘Bush Blue Lake 290’. This snap bean cultivar is normally rather sensitive to 03 but becomes highly tolerant when treated systemically with EDU. Less than 24 h is required to induce the resistance. Standardized trifoliate leaves from EDU-treated and control plants were sampled 48 h after treatment. Additional plants were sampled 48 h after treatment. Additional plants were exposed to 03 one day after EDU soil application to assess the plant tolerance induced. The optimal dose required to enhance oxidant tolerance was 50 mg/pot.Major sugars in both EDU-treated (03-tolerant) and untreated (03-sensitive) leaves were glyceraldehyde, erythritol, fructose, glucose and sucrose. Myo-inositol, ribose and arbitol were present in lesser or trace amounts. EDU-treatment resulted in significant increases (35–62%) in all soluble carbohydrates except glyceraldehyde and myo-inositol. Implications relating to plant tolerance, to oxidants and stress-induced senescence are discussed.  相似文献   

20.
Fast-growing metal-accumulating woody plants are considered potential candidates for phytoextraction of metals. Shuikoushan mining, one of the biggest Pb and Zn production bases in China, presents an important source of the pollution of environment during the last 100 years. Over 150 km2 of fertile soil have been contaminated by the dust, slag, and tailings from this mining. The goal of the present work has been to determine the content of Pb, Zn, Cd, and Cu in wild woody plants (18 species) naturally growing in this area. Two hundred five plant and soil samples from 11 contaminated sites were collected and analyzed. In addition, to assess the ability of multi-metal accumulation of these trees, we proposed a predictive comprehensive bio-concentration index (CBCI) based on fuzzy synthetic assessment. Our data suggest some adult trees could also accumulate a large amount of metals. Pb concentrations in leaves of Paulownia fortunei (Seem.) Hemsl. (1,179 mg/kg) exceeded the hyperaccumulation threshold (1,000 mg/kg). Elevated Pb concentrations (973.38 mg/kg) were also found in the leaves of Broussonetia papyrifera (L.) Vent., with a Pb bio-concentration factor of up to 0.701. Endemic species, Zenia insignis Chun exhibited huge potential for Zn and Cd phytoextraction, with the highest concentrations of Zn (1,968 mg/kg) and Cd (44.40 mg/kg), characteristic root nodules, and fast growth rates in poor soils. As for multi-metal accumulation ability, native species B. papyrifera was calculated to have the most exceptional ability to accumulate various metals simultaneously (CBCI 2.93), followed by Amorpha fruticosa L. (CBCI 2.72) and Lagerstroemia indica L. (CBCI 2.53). A trend of increasing metal from trunks to leaves (trunks?<?branches?<?leaves) and towards fine roots has been shown by metal partitioning between tissues. The proposed CBCI would allow for the selection of suitable trees for phytoremediation in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号