首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Dissolved organic matter (DOM) plays an important role in heavy metal speciation and distribution in the aquatic environment especially for eutrophic lakes which have higher DOM concentration. Taihu Lake is the third largest freshwater and a high eutrophic lake in the downstream of the Yangtze River, China. In the lake, frequent breakout of algae blooms greatly increased the concentration of different organic matters in the lake sediment. In this study, sediment samples were collected from various part of Taihu Lake to explore the spatial difference in the binding potential of DOM with Cu. The titration experiment was adopted to quantitatively characterize the interaction between Cu(II) and DOM extracted from Taihu Lake sediments using ion selective electrode (ISE) and fluorescence quenching technology. The ISE results showed that the exogenous DOM had higher binding ability than endogenous DOM, and DOM derived from aquatic macrophytes had a higher binding ability than that derived from algae. The fluorescence quenching results indicated that humic substances played a key role in the complexation between DOM and Cu(II) in the lake. However, because of the frequent breakout of algae blooms, protein-like matters are also main component like hnmic matters in Taihu Lake. Therefore, the metals bound by protein-like substances should be caused concern as protein-like substances in DOM were unstable and they will release bound metal when decomposed.  相似文献   

2.
• The source of DOM in surface water and sediment is inconsistent. • The DOC content changes differently in surface water and sediment. • The content of DOC in the surface water is lower than that in the sediment. • The DOM in the surface water had higher photodegradation potentials than sediment. Dissolved organic matter (DOM) in rivers is a critical regulator of the cycling and toxicity of pollutants and the behavior of DOM is a key indicator for the health of the environment. We investigated the sources and characteristics of DOM in surface water and sediment samples of the Wei River, China. Dissolved organic carbon (DOC) concentration and ultraviolet absorbance at 254 nm (UV254) increased in the surface water and were decreased in the sediment downstream, indicating that the source of DOM in the water differed from the sediment. Parallel factor (PARAFAC) analysis of the excitation-emission matrices (EEM) revealed the presence of terrestrial humus-like, microbial humus-like and tryptophan-like proteins in the surface water, whereas the sediment contained UVA humic-like, UVC humic-like and fulvic-like in the sediment. The DOM in the surface water and sediment were mainly derived from microbial metabolic activity and the surrounding soil. Surface water DOM displayed greater photodegradation potential than sediment DOM. PARAFAC analysis indicated that the terrestrial humic-like substance in the water and the fulvic-like component in the sediment decomposed more rapidly. These data describe the characteristics of DOM in the Wei River and are crucial to understanding the fluctuations in environmental patterns.  相似文献   

3.
A rapid and effective method based on a novel permanent magnetic hypercrosslinked resin W150 was proposed for the removal of organic micropollutants in drinking water. W150 was prepared by suspension and post-crosslinking reaction and found to possess a high specific surface area of 1149.7 m2·g-1, a small particle size of 50 μm to 100 μm, and a saturation magnetization as high as 8 emu·g-1. W150 was used to eliminate nitrofurazone (NFZ) and oxytetracycline (OTC) from drinking water compared with commercial adsorbents XAD-4 and F400D. The adsorption kinetics of NFZ and OTC onto the three adsorbents well fitted the pseudo-second-order equation (r>0.972), and the adsorption isotherms were all well described by the Freundlich equation (r>0.851). Results showed that the reduction in adsorbent size and the enlargement in sorbent pores both accelerated adsorption. Moreover, the effect of particle size on adsorption was more significant than that of pore width. Given that the smallest particle size and the highest specific surface area were possessed by W150, it had the fastest adsorption kinetics and largest adsorption capacity for NFZ (180 mg·g-1) and OTC (200 mg·g-1). For the adsorbents with dominant micropores, the sorption of large-sized adsorbates decreased because of the inaccessible micropores. The solution pH and ionic strength also influenced adsorption.  相似文献   

4.
This study was to assess the metal contamination in oyster tissue grown in the Ann-ping mariculture ground in Taiwan. the information generated from this work also revealed general metal pollution problem for Taiwan's oyster farmers. Oysters, Crassostrea gigas, and surficial sediments collected from ten locations in Ann-ping mariculture ground in Taiwan for metals concentration (Cu, Zn, Pd, Cd, Fe and Mn) were performed. Analytical results indicated that the yearly averaged oyster copper concentrations (μg g-1, wet weight) in oyster soft parts from Ann-ping increased from 21.3±4.1 in 1993; 24.1±6.8 in 1994; 36.8±11.9 in 1995 to 43.9±23.1 μg g-1, wet weight, in the 1996 raising season. the mean oyster copper concentration reached a level of 50 μg g-1, wet weight, in December 1996. This increasing trend of metal concentration in oyster tissue indicates a potential pollution source which may pose a potential disaster as green oyster incidence, which occurred on the Charting coast in 1986, in Taiwan. Sediment samples in Ann-ping mariculture ground were also collected and examined. the seasonal variation of the copper concentration in surficial sediment from Ann-ping did not show an increasing trend as observed in oyster tissue.  相似文献   

5.
The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g-1 Fe0 at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L-1, EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g-1 Fe0 at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L-1, pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g-1 Fe0 at influent concentrations of 1, 4, and 8 mg·L-1 (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr6+·g-1 Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.  相似文献   

6.
Three adsorbents including TiO2, Ti-Ce, and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution. The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much higher sorption capacity for fluoride than the TiO2 adsorbent prepared through hydrolysis. Rare earth (Ce and La) oxides and TiO2 exhibited a synergistic effect in the hybrid adsorbents for fluoride sorption. The sorption equilibrium of fluoride on the three adsorbents was achieved within 4 h, and the pseudo-second-order model described the sorption kinetics well. The sorption isotherms fitted the Langmuir model well, and the adsorption capacities of fluoride on the Ti-Ce and Ti-La adsorbents were about 9.6 and 15.1 mg·g-1, respectively, at the equilibrium fluoride concentration of 1.0 mg·L-1, much higher than the 1.7 mg·g-1 on the TiO2. The sorption capacities of fluoride on the three adsorbents decreased significantly when the solution pH increased from 3 to 9.5. The electrostatic interaction played an important role in fluoride removal by the three adsorbents, and Fourier transform infrared (FTIR) analysis indicated that the hydroxyl groups on the adsorbent surface were involved in fluoride adsorption.  相似文献   

7.
A simple solvothermal method was used to prepare monodisperse magnetite (Fe3O4) nanoparticles attached onto graphene oxide (GO) sheets as adsorbents to remove tetrabromobisphenol A (TBBPA) from an aqueous solution. These Fe3O4/GO (MGO) nanocomposites were characterized by transmission electron microscopy. The adsorption capacity at different initial pH, contact duration, and temperature were evaluated. The kinetics of adsorption was found to fit the pseudo-second-order model perfectly. The adsorption isotherm well fitted the Langmuir model, and the theoretical maximum of adsorption capacity calculated by the Langmuir model was 27.26 mg?g-1. The adsorption thermodynamics of TBBPA on the MGO nanocomposites was determined at 303 K, 313 K, and 323 K, respectively. The results indicated that the adsorption was spontaneous and endothermic. The MGO nanocomposites were conveniently separated from the media by an external magnetic field within several seconds, and then regenerated in 0.2 M NaOH solution. Thus, the MGO nanocomposites are a promising candidate for TBBPA removal from wastewater.  相似文献   

8.
A novel hyper-crosslinked resin (MENQ) modified with an anion exchange group was prepared using divinylbenzene (DVB) and methyl acrylate (MA) as comonomers via four steps: suspension polymerization, post-crosslinking, ammonolysis and alkylation reactions. The obtained resin had both a high specific surface area (793.34 m2·g-1) and a large exchange capacity (strong base anion exchange capacity, SEC: 0.74 mmol·g-1, weak base anion exchange capacity, WEC: 0.45 mmol·g-1). XAD-4 was selected as an adsorbent for comparison to investigate the adsorption behavior of tetracycline (TC) and humic acid (HA) onto the adsorbents. The results revealed that MENQ could effectively remove both TC and HA. The adsorption capacity of XAD-4 for TC was similar to that of MENQ, but XAD-4 exhibited poor performance for the adsorption of HA. The adsorption isotherms of TC and HA were well-fitted with the Freundlich model, which indicated the existence of heterogeneous adsorption through cation-π bonding and π–π interactions. The optimal solution condition for the adsorption of TC was at a pH of 5–6, whereas the adsorption of HA was enhanced with increasing pH of the solution.  相似文献   

9.
Heavy metals are increasingly being released into natural waters from geological and anthropogenic sources. The distribution of several heavy metals (Cr, Cu, Cd, Pb, Zn, and Hg) was investigated in muscle, gill, and liver in two different fish species seasonally collected in El-Mex Bay (autumn 2004-summer 2005). In order to evaluate the pollution status of the Bay, the concentrations of the selected metals in the labile and total fractions were analysed in sediment samples collected from eight sites in El-Mex Bay during autumn 2004. Also, the Index of Geoaccumulation (Igeo) for the sediment was estimated. The total and labile fractions of the selected metals in sediment samples were 15.2 and 62.8 μg g-1 dw for Cu, 1.8 and 5.0 μg g-1 dw for Cd, 79.1 and 130.3 μg g-1 dw for Zn, 0.2 and 1.2 μg g-1 dw for Hg, 35.8 and 93.0 μg g-1 dw for Pb, and 13.9 and 31.0 μg g-1 dw for Cr. The concentrations of all metals were lower in flesh than those recorded in liver and gill due to their physiological roles. The metal pollution index for fish was calculated. Health hazard calculations for the contaminated sediments and fish consumption were calculated to evaluate the effect of pollution on health.  相似文献   

10.
新型溴系阻燃剂(NBFRs,novel brominated flame retardants)作为传统溴系阻燃剂的替代品已广泛应用于电子产品、纺织品、家具等商品中,随着这些商品的生产、使用和处置,NBFRs不可避免地释放到环境中,给环境和人体带来潜在的危害.部分NBFRs可通过摄食和呼吸作用进入人体对人体产生一定危害...  相似文献   

11.
Batch sorption experiments were conducted to evaluate the sorption behavior of tetracycline (TC, H3L) on sediments and soils in the presence and absence of cadmium (Cd), as affected by pH and properties of sediments and soils. The results indicated stronger nonlinearity and higher capacity of TC sorption on sediments than on soils. Sorption of TC also strongly depended on environmental factors and sediment/soil properties. Lower pH facilitated TC sorption through a cation exchange mechanism, which also took place at pH values above 5.5, where TC existed as a zwitterion (H2L0) or anions (HL- and L2-). When pH was above 7, however, ligand-promoted dissolution of TC might occur due to TC weakening the Al-O bond of aluminum oxide and the Fe-O bond of iron oxide. Natural organic matter (NOM) plays a more important role in TC sorption than cation exchange capacity (CEC) and clay contents. The presence of Cd (II) increased TC sorption on both sediments and soils, which resulted from the decrease of equilibrium solution pH caused by Cd2+ exchange with H+ ions of sediment/soil surfaces. The increase of TC sorption was also related to the formation of TC-Cd complexes, where Cd2+ acted as a bridge between the sediment/soil and TC.  相似文献   

12.
Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD analysis confirmed the existence of FO on FOAE. After FO loading, the adsorption capacity of the hybrid adsorbent increased from 38.70 to 51.52mg.g-1. Adsorption processes for both FOAE and anion resin were better fit to the pseudo first order model. Batch adsorption experiments revealed that higher temperature (313K), higher initial phosphate concentration (50 mg.L-1) and lower solution pH (pH value of 2) would be more propitious to phosphate adsorption. Competition effect of coexisting anions on phosphate removal can be concluded as sulfate 〉 nitrate 〉 chloride. Freundlich isotherm model can describe the adsorption of phosphate on FOAE more accurately, which indicated the heterogeneous adsorption occurred on the inner-surface of FOAE.  相似文献   

13.
The objective of this study is to investigate the occurrence of haloacetic acids (HAAs), a group of disinfection byproducts, in swimming pool and spa water. The samples were collected from six indoor pools, six outdoor pools and three spas in Pennsylvania, the United States, and from five outdoor pools and nine indoor pools in Beijing, China. Five HAAs (HAA5), including monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid were analyzed. Total chlorine, pH and total organic carbon concentration were analyzed as well. Results indicated that the levels of HAA5 in swimming pools and spas in the United States ranged from 70 to 3980μg·L^-1, with an arithmetic average at 1440μg·L^-1 and a median level at 1150μg·L^-1. These levels are much higher than the levels reported in chlorinated drinking water and are likely due to organic matters released from swimmers' bodies. The levels of HAA5 in swimming pools in China ranged from 13 to 332μg·L^-1, with an arithmetic average at 117μg·L^-1 and a median level at 114μg·L^-1. The lower HAA levels in swimming pools in China were due to the lower chlorine residuals. Results from this study can help water professionals to better understand the formation and stability of HAAs in chlorinated water and assess risks associated with exposures to HAAs in swimming pools and spas.  相似文献   

14.
Six soil profiles irrigated and non-irrigated with sewage wastewater were investigated for soil pH, electrical conductivity (EC), organic matter (OM), and CaCO3. The distributions and chemical fractions of Cu, Zn, Cd, and Pb, and their lability were also studied. The results indicated that pH, EC, OM, and CaCO3, as well as metal fractionation in soil profiles were affected by wastewater irrigation, especially in the surface layer. The surface layer (0-15 cm) irrigated with wastewater exhibited a 0.6 unit decrease in soil pH, a 40.6% decrease in CaCO3, and a 200% increase in EC as compared with that of the non-irrigated soil. The soil OM increased from 0.04% to 0.35% in the surface layer. The irrigation of soil with wastewater resulted in transformation of metals from the carbonate fraction (CARB) towards the exchangeable (EXCH), Fe-Mn oxide (ERO), and organic (OM) fraction for Zn, towards the EXCH, the OM, and residual fraction for Cu, and towards the exchangeable (EXCH) fraction for Cd. It was concluded that the use of sewage wastewater led to salt accumulation and an increase in the readily labile fraction of Zn, Cu, and Cd in the surface layer. Therefore, this reason may limit the use of wastewater under arid and semi-arid conditions.  相似文献   

15.
The biologic activated carbon (BAC) process is widely used in drinking water treatments. A comprehensive molecular analysis of the microbial community structure provides very helpful data to improve the reactor performance. However, the bottleneck of deoxyribonucleic acid (DNA) extraction from BAC attached biofilm has to be solved since the conventional procedure was unsuccessful due to firm biomass attachment and adsorption capacity of the BAC granules. In this study, five pretreatments were compared, and adding skim milk followed by ultrasonic vibration was proven to be the optimal choice. This protocol was further tested using the vertical BAC samples from the full-scale biofilter of Pinghu Water Plant. The results showed the DNA yielded a range of 40 μg·g-1 BAC (dry weight) to over 100 μg·g-1 BAC (dry weight), which were consistent with the biomass distribution. All results suggested that the final protocol could produce qualified genomic DNA as a template from the BAC filter for downstream molecular biology researches.  相似文献   

16.
《Ecological modelling》2005,183(4):463-476
A mass-balance model was developed to simulate organic matter (OM) dynamics in headwater stream ecosystems of south-western British Columbia, Canada. Empirical data from two streams were used to structure and test a mass-balance model of the riparian–stream system. The model was driven by data on inputs, outputs, processing rates, discharge and water temperature. Statistical sub-models were derived for different processes (e.g. decomposition rates and periphyton growth). Inputs and outputs of OM were modelled on the basis of a series of assumptions of system properties, such as temperature and hydrological regimes. Major uncertainties identified through Monte-Carlo simulations of model predictions and variables important in controlling OM dynamics in these streams were dissolved OM (DOM) import and export, stream area and litterfall import. DOM was quantitatively the most important source of OM, accounting for 80% of total export of OM, followed by export of fine particulate organic matter (FPOM) at 15%. Different scenarios of logging and temperature regimes on the system were simulated to predict how these factors would affect standing stock of OM in the stream. When inputs of riparian litterfall were simulated to mirror reductions predicted from forest harvesting in the riparian area particulate OM (POM) standing stock was reduced by almost 80%. In comparison, a 3 °C increase in water temperature resulted in only a 20% reduction of POM standing stock due to enhanced mineralisation.  相似文献   

17.
Total organic carbon, humic substances, and the species of trace metals (including Cu, Zn, Pb, Cd, Cr, Mn and Fe) in six and seven phases, such as bioexchangeable (P1), skeletal (carbonates, P2), easily reducible (Fe and Mn oxides, P3), moderately reducible (crystalline Mn oxides, P4), organic matters with sulphides (P5), and detritus with minerals (P6) as well as organic with humic substances (PB4) and organic residues (PB6), were analyzed in sediments from the Taiwan Erhjin coastal (including river and estuarine) area, where places we found the copper pollution. Results indicate that higher percentages of P1 and P2 for copper, zinc, lead, cadmium and manganese in samples collected in March and September of 1990 were much higher than those in P3-P6. High percentages of chromium and iron in samples respectively collected in March and September of 1990 were found in P6. for the seven phase analysis, higher percentages of copper species in PB4 and PB6 as well as iron species in PB7 were observed. On the other hand, purified humic acid with the high contents of manganese and iron in humic acid as well as purified fulvic acids were generally found at the upstream stations; and low values at coastal stations. However, extremely high copper (as high as 1750μg g-1, dry weight in fulvic acid and 820μg g-1 in humic acid) and lead (821μg g-1 in humic acid) concentrations with relatively high manganese and iron concentrations were observed in humic substances from the station near the copper recycling area. Comparing the results obtained from the Antarctic Ocean sediments with those from the Taiwan Erhjin Chi coastal sediments, the human impacts on the latter are evaluated.  相似文献   

18.
The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd2+, Cu2+ and Pb2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd2+, Cu2+ and Pb2+ were 1.23, 2.25 and 2.60 mmol·g-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18 mmol·g-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlich adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnO2 surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.  相似文献   

19.
Soil low-molecular-weight (LMW) organic acids play important roles in the soil-forming process and the cycling of nutrients in Karst regions. In this study, we quantified the contents of LMW organic acids (including lactate, acetate, formate, malate, and oxalate) in soil solution over the Karst region of Guizhou Province, China using ion chromatography. The concentration of total LMW organic acids in topsoil solution ranged from 0.358 to 1.823 μmol·g-1, with an average of 0.912 μmol·g-1. The mean concentrations of lactate, acetate, formate, malate, and oxalate were 0.212±0.089, 0.302±0.228, 0.301±0.214, 0.014±0.018 and 0.086±0.118 μmol·g-1, respectively. There were also significant difference in the contents of these acids among four phases of rocky desertification, and their concentrations decreased with the aggravation of rocky desertification. The concentrations of the LMW organic acids were significantly positive correlated each other. Significant positive correlations were also observed among individual LMW organic acids in soil solution, and between them and soil available P, available K, exchangeable Ca, respectively. Furthermore, the concentrations of LMW organic acids were significantly positively correlated with inorganic anions (chlorides, nitrates, and sulfates) in Karst topsoil solution. Therefore, the concentrations of soil LMW organic acids might be one of driving force in the Karst rock desertification process in Guizhou Province.  相似文献   

20.
● Effect of composting approaches on dissolved organic matter (DOM). ● Effect of composting conditions on the properties of DOM. ● Character indexes of DOM varied in composting. ● The size, hydrophobicity, humification, and electron transfer capacity increased. ● The hydrophilicity, protein-like materials, and aliphatic components reduced. As the most motive organic fraction in composting, dissolved organic matter (DOM) can contribute to the transfer and dispersal of pollutants and facilitate the global carbon cycle in aquatic ecosystems. However, it is still unclear how composting approaches and conditions influence the properties of compost-derived DOM. Further details on the shift of DOM character indexes are required. In this study, the change in properties of compost-derived DOM at different composting approaches and the effect of composting conditions on the DOM characteristics are summarized. Thereafter, the change in DOM character indexes’ in composting was comprehensively reviewed. Along with composting, the elements and spectral properties (chromophoric DOM (CDOM) and fluorescent DOM (FDOM)) were altered, size and hydrophobicity increased, and aromatic-C and electron transfer capacity were promoted. Finally, some prospects to improve this study were put forward. This paper should facilitate the people who have an interest in tracing the fate of DOM in composting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号