首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During brewery wastewater treatment by a hydrolyzation-food chain reactor (FCR) system, sludge was recycled to the anaerobic segment. With the function of hydrolyzation acidification in the anaerobic segment and the processes of aerobic oxidation and antagonism, predation, interaction and symbiosis among microbes in multilevel oxidation segment, residual sludge could be reduced effectively. The 6-month dynamic experiments show that the average chemical oxygen demand (COD) removal ratio was 92.6% and average sludge production of the aerobic segment was 8.14%, with the COD of the influent at 960–1720 mg/L and hydraulic retention time (HRT) of 12 h. Since the produced sludge could be recycled and hydrolyzed in the anaerobic segment, no excess sludge was produced during the steady running for this system.  相似文献   

2.
Algal biofilmtechnology is a new and advanced wastewater treatment method. Experimental study on removing nitrogen and phosphorus from simulated wastewater using algal biofilm under the continuous light of 3500 Lux in the batch and continuous systems was carried out in this paper to assess the performance of algal biofilm in removing nutrients. The results showed that the effect of removing nitrogen and phosphorus by algal biofilm was remarkable in the batch system. The removal efficiencies of total phosphorus (TP), total nitrogen (TN), ammonia-nitrogen (NH3-N), and chemical oxygen demand (COD) reached 98.17%, 86.58%, 91.88%, and 97.11%, respectively. In the continuous system, hydraulic retention time (HRT) of 4 days was adopted; the effects of removing TP, TN, NH3-N, and COD by algal biofilm were very stable. During a run of 24 days, the removal efficiencies of TP, TN, NH3-N, and COD reached 95.38%, 83.93%, 82.38%, and 92.31%, respectively. This study demonstrates the feasibility of removing nitrogen and phosphorus from simulated wastewater using algal biofilm.  相似文献   

3.
• A full scale biofilm process was developed for typical domestic wastewater treatment. • The HRT was 8 h and secondary sedimentation tank was omitted. Candidatus Brocadia were enriched in the HBR with an abundance of 2.89%. • Anammox enabled a stable ammonium removal of ~15% in the anoxic zone. The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems. Herein, a 300 m3/d hybrid biofilm reactor (HBR) process was developed and operated with a short hydraulic retention time (HRT) of 8 h. The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process. The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33% at Day 130 and then to 2.89% at Day 213. Based upon the activity of anammox bacteria, the removal of ammonia nitrogen (NH4+-N) in the anoxic zone was approximately 15%. This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone. The final effluent contained 12 mg/L chemical oxygen demand (COD), 0.662 mg/L NH4+-N, 7.2 mg/L total nitrogen (TN), and 6 mg/L SS, indicating the effectiveness of the HBR process for treating real domestic wastewater.  相似文献   

4.
猪场废水厌氧消化过程中的除磷效果   总被引:6,自引:0,他引:6  
采用序批式半连续厌氧消化试验方法,研究猪场废水厌氧消化过程中磷的去除情况。结果表明,水力停留时间(HRT)为1、3、6和9 d的厌氧反应器平均除磷率分别为65.0%、81.1%、82.7%和83.0%,而COD平均去除率分别为54.5%、82.3%、87.0%和85.9%。厌氧反应器除磷能力随沼气产量的增加而增加,说明厌氧反应器中磷的去除与产甲烷过程密切相关。对厌氧消化前后的污泥进行浸提后发现,厌氧消化过程中,化学反应生成磷酸盐沉淀的除磷作用十分显著,污泥中正磷酸盐,与铁结合的磷化合物(Fe-RP),还原可溶性磷,与钙、镁离子结合的磷化合物(Ca-RP、Mg-RP)以及无机或有机聚合磷增加量分别为0.027 8~0.101 5、0.013 5~0.081 0、0.2165~0.430 5、23.4~54.8和7.2~21.5 mg.g-1;且总体而言,HRT越长,污泥中与不同金属结合的磷增加量就越大。从HRT、磷和有机物的去除效果以及沼气产气速率3个方面综合考虑,猪场废水厌氧消化反应器的HRT控制在3 d为宜。  相似文献   

5.
在10 L的厌氧折流板(ABR)反应器中,研究甲醛浓度对糖蜜酒精废水的厌氧降解处理的影响,研究结果表明,甲醛浓度在0~200 mg/L内时,厌氧发酵降解相对稳定,产生抑制作用较小,当甲醛浓度大于200mg/L时,厌氧发酵降解抑制作用明显,当达到250 mg/L左右时,厌氧反应几乎停止进行,在糖蜜酒精废水溶液中添加0.75倍甲醛浓度的NS能过消除甲醛的抑制作用,维持厌氧反应的正常进行.  相似文献   

6.
生态工程系统(EES)处理焦化废水是实现低成本废水资源化的有效手段。该EES由UASB ABS IWBE组成。结果表明:在HRT为30h时,该系统对废水COD去除率的均值是91.1%,对NH4-N去除率平均为99.5%,对酚去除率平均为99.8%。废水可达标排放或循环利用。  相似文献   

7.
物化预处理-水解酸化-接触氧化法处理选矿废水   总被引:1,自引:0,他引:1  
对某浮选厂浮选废水进行混凝沉淀+活性碳吸附预处理,然后进入生化系统,厌氧池、好氧池停留时间为10h.结果证明:进水COD为400~700mg/L,出水74~145 mg/L,去除率达75.8%以上,首次成功地将生物法应用到铅锌选矿废水的处理,若对该工艺进行适当调整,完全可以使出水达到排放或回用标准.  相似文献   

8.
Dyes are common pollutants in textile wastewaters, and the treatment of the wastewater has now attracted much attention due to its wide application and low biodegradability. In this study, Fe0/C/Clay ceramics, a kind of novel micro-electrolysis filler, were sintered and employed in a dynamic micro-electrolysis reactor for synthetic Acid Red 73 (AR73) and Reactive Blue 4 (RB4) wastewater treatment. The effects of influent pH, hydraulic retention time (HRT), and aeration on the decoloration efficiencies of AR73 and RB4 were studied. The optimum conditions for wastewater treatment were: AR73, influent pH of 4, HRT of 2 h and aeration; RB4, influent pH of 5, HRT of 6 h and aeration. Under the optimum conditions, decoloration efficiency of AR73 and RB4 wastewater was 96% and 83%, respectively. Results of UV-vis spectrum scanning demonstrated that the chromophores were broken. Continuous running tests showed that improvement of micro-electrolysis system with Fe0/C/Clay ceramics for AR73 and RB4 synthetic wastewater treatment could avoid failure of micro-electrolysis reactor, which indicated great potential for the practical application of the ceramics in the field of actual industrial wastewater treatment.  相似文献   

9.
针对我国水源地藻类污染日趋严重等问题,利用前期分离获得的溶藻菌Streptomyces sp.HJC-D1研究固定化微生物技术强化污染水源水除藻以及脱氮性能。结果表明,对照组和试验组的水体叶绿素a平均去除率分别为(71.66±5.35)%和(80.94±4.36)%,NH4+—N的平均去除率为(77.76±2.83)%和(72.36±3.18)%,而高锰酸盐指数(CODMn)平均去除率为(24.99±1.52)%和(18.74±1.38)%;不同曝气条件的影响研究发现,曝气/停曝时间比2:4、曝气量60 L.h-1工况下,系统CODMn和NH4+—N去除率均有所提高,相比对照组NO3-—N积累更为明显;水力停留时间(HRT)变化对系统NH4+—N、CODMn等的去除影响不大,但缩短HRT时叶绿素a去除率有所降低;分析反应器内填料表面微生物相发现,试验组填料表面有溶藻菌富集,推测对照组除藻主要通过填料对藻类的吸附去除,而试验组则是藻类吸附在填料表面后通过溶藻微生物实现藻类去除。  相似文献   

10.
氨氮废水的厌氧氨氧化生物脱氮研究   总被引:1,自引:0,他引:1  
利用从厌氧污泥中筛选和驯化的厌氧氨氧化(Anammox)菌直接启动UASB反应器,通过缩短水力停留时间(HRT)提高系统运行负荷,探讨水力停留时间对模拟废水脱氮性能的影响。结果表明,(1)富含Anammox菌的颗粒污泥能够快速启动反应器(只需14d)。(2)连续91d的HRT测试期间,系统具有良好的脱氮性能,且随着HRT的缩短,系统的脱氮效率具有波动上升的特点。NH4+-N、NO2--N和TN(总氮)的平均去除率超过70.0%。(3)系统总氮容积负荷(TNLR)和总氮去除负荷(TNRR)最大值(以N计)分别为2.04kg·m-3·d-1和1.56kg·m-3·d-1。(4)系统能够比较好的遵循Anammox生物脱氮的理论途径:NH4+-N、NO2--N的去除速率与NO3--N的生成速率的比例为1?1.15?0.22,与其相应理论值(1?1.32?0.26)非常接近。  相似文献   

11.
An anaerobic contact reactor (ACR) system comprising a continuous flow stirred tank reactor (CSTR) with settler to decouple the hydraulic retention time (HRT) from solids retention time (SRT) was developed for fermentative hydrogen production from diluted molasses by mixed microbial cultures. The ACR was operated at various volumetric loading rates (VLRs) of 20–44 kgCOD·m-3·d-1 with constant HRT of 6 h under mesophilic conditions of 35°C. The SRT was maintained at about 46–50 h in the system. At the initial VLR of 20 kgCOD·m-3·d-1, the hydrogen production rate dropped from 22.6 to 1.58 L·d-1 as the hydrogen was consumed by the hydrogentrophic methanogen. After increasing the VLR to 28 kgCOD·m-3·d-1 and discharging the sludge for 6 consecutive times, the hydrogentrophic methanogens were eliminated, and the hydrogen content reached 36.4%. As the VLR was increased to 44 kgCOD·m-3·d-1, the hydrogen production rate and hydrogen yield increased to 42.1 L·d-1 and 1.40 mol H2·molglucose-consumed-1, respectively. The results showed that a stable ethanol-type fermentation that favored hydrogen production in the reactor was thus established with the sludge loading rate (SLR) of 2.0–2.5 kgCOD·kgMLVSS-1·d-1. It was found that the ethanol increased more than other liquid fermentation products, and the ethanol/acetic acid (mol/mol) ratio increased from 1.27 to 2.45 when the VLR increased from 28 to 44 kgCOD·m-3·d-1, whereas the hydrogen composition decreased from 40.4% to 36.4%. The results suggested that the anaerobic contact reactor was a promising bioprocess for fermentative hydrogen production.  相似文献   

12.
13.
A biofilm membrane bioreactor (BF-MBR) and a conventional membrane bioreactor (MBR) were parallelly operated for treating digested piggery wastewater. The removal performance of COD, TN, NH4 +-N, TP as well as antibiotics were simultaneously studied when the hydraulic retention time (HRT) was gradually shortened from 9 d to 1 d and when the ratio of influent COD to TN was changed. The results showed that the effluent quality in both reactors was poor and unstable at an influent COD/TN ratio of 1.0±0.2. The effluent quality was significantly improved as the influent COD/TN ratio was increased to 2.3±0.5. The averaged removal rates of COD, NH4 +-N, TN and TP were 92.1%, 97.1%, 35.6% and 54.2%, respectively, in the BF-MBR, significantly higher than the corresponding values of 91.7%, 90.9%, 17.4% and 31.9% in the MBR. Analysis of 11 typical veterinary antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) revealed that the BF-MBR removed more antibiotics than the MBR. Although the antibiotics removal decreased with a shortened HRT, high antibiotics removals of 86.8%, 80.2% and 45.3% were observed in the BF-MBR at HRTof 5–4 d, 3–2 d and 1 d, respectively, while the corresponding values were only 83.8%, 57.0% and 25.5% in the MBR. Moreover, the BF-MBR showed a 15% higher retention rate of antibiotics and consumed 40% less alkalinity than the MBR. Results above suggest that the BF-MBR was more suitable for digested piggery wastewater treatment.
  相似文献   

14.
• A Passive Aeration Ditch was developed to treat decentralized wastewater. • A model was developed to describe the process performance. • A high C/N ratio facilitates microbial growth but nitrification deteriorates. • A high salinity decreases both organic and nitrogen contaminants removal. Decentralized wastewater containing elevated salinity is an emerging threat to the local environment and sanitation in remote coastal communities. Regarding the cost and treatment efficiencies, we propose a passive aeration ditch (PAD) using non-woven polyester fabric as a feasible bubbleless aerator and biofilm carrier for wastewater treatment. Consideration has been first given to PAD’s efficacy in treating saline decentralized wastewater, and then to the impact of chemical oxygen demand-to-nitrogen (C/N) ratio and salinity on biofilm formation. A multispecies model incorporating the salinity effect has been developed to depict the system performance and predict the microbial community. Results showed that the PAD system had great capacity for pollutants removal. The biofilm thickness increased at a higher C/N ratio because of the boost of aerobic heterotrophs and denitrifying bacteria, which consequently improved the COD and total nitrogen removal. However, this led to the deterioration of ammonia removal. Moreover, while a higher salinity benefited the biofilm growth, the contaminant removal efficiencies decreased because the salinity inhibited the activity of aerobic heterotrophs and reduced the abundance of nitrifying bacteria inside the biofilm. Based on the model simulation, feed water with salinity below 2% and C/N ratio in a range of 1 to 3 forms a biofilm that can reach relatively high organic matter and ammonia removal. These findings not only show the feasibility of PAD in treatment of saline decentralized wastewater, but also offer a systematic strategy to predict and optimize the process performance.  相似文献   

15.
The UASB system successfully treated sulfamethoxazole pharmaceutical wastewater. High concentration sulfate of this wastewater was the main refractory factor. UASB recovery performance after a few days of inflow arrest was studied. The optimal UASB operating conditions for practical application were determined. Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge. In this study, a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion, and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration. A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand (COD), organic loading rate (OLR), and COD/SO42? ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance. The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO42? ratio. For the treated sulfamethoxazole pharmaceutical wastewater, a COD of 4983 mg/L (diluted by 50%), OLR of 2.5 kg COD/(m3·d), and COD/SO42? ratio of more than 5 were suitable for practical applications. The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.  相似文献   

16.
Approximately 400 KL of spent wash or vinasse per annum is generated at an average COD concentration of 100,000 mg/l, by over 250 distilleries in India. There is an urgent need to develop, assess and use ecofriendly methods for the disposal of this high strength wastewater. Therefore, an attempt was made to investigate a few aspects of anaerobic digestion of spent wash collected from a distillery. The study was carried out in a 4 L laboratory scale anaerobic mesophilic suspended growth reactor. After the successful startup, the organic loading was increased stepwise to assess the performance of the reactor. During the study period, biogas generated was recorded and the maximum gas generated was found to be 16.9 L at an Organic Loading Rate (OLR) of 38 g COD/L. A 500% increase in the Volatile Fatty Acid (VFA) concentration (2150 mg/L) was observed, when the OLR was increased from 38 to 39 g COD/L. During the souring phase the removal of COD, Total Solids (TS) and Volatile Solids (VS) were in the order of 52%, 40% and 46% respectively. The methane content in the biogas varied from 65% to 75%.  相似文献   

17.
序批式生物膜法同步除磷脱氮特性研究   总被引:6,自引:0,他引:6  
对淹没序批式生物膜法去除有机物和磷及同步部分脱氮的特性进行了研究。其适合的载体装填密度为30%,水力停留时间为9h,其中厌氧3h,好氧6h,进水COD负荷从0.27kg/(m^3.d)到1.32kg/(m^3.d)均可使除磷率达90%以上,脱氮率达50%-60%。淹没式生物膜法除磷脱氮工艺中的优势菌属为假单胞菌属,其次依顺序为气单胞菌属,芽孢杆菌属,微球菌属,硝化矸菌属,生物膜具有生物量大(MLVSS达5531.7mg/L),脱落污泥含磷量高(达5.67%),沉降性好(SVI为101.7)的特点,污泥产率为0.1996kg干泥/kgCOD。  相似文献   

18.
城市有机生活垃圾溶胞处理对其厌氧消化的影响机理   总被引:3,自引:0,他引:3  
张记市  孙可伟  徐静 《生态环境》2006,15(4):862-865
由于城市有机生活垃圾成分的复杂性和厌氧消化的限速步骤的影响,导致厌氧发酵的速度比较缓慢、产气量较少和工艺不稳定等问题。文章综述了国内外有机生活垃圾的各种溶胞处理技术,如物理法、化学法、生物法及其联合处理等方法,以便改善发酵物料的性质,消除厌氧发酵的限速步骤。研究认为,通过溶胞处理能够改善有机垃圾的物理化学性质如发酵物料的溶解度、酸碱度等,提高微生物对难降解有机物的分解,增加可溶性COD和挥发性酸的浓度,优化发酵细菌的代谢途径以及产物的组成等,从而增加生物气产量,缩短水力停留时间,强化厌氧发酵过程,减轻了后续处理的负担。  相似文献   

19.
This paper describes the feasibility of fresh leachate treatment by an upflow blanket filter (UBF). Through dilution and partial effluent recycling, the organic loading rates increased from 0.51 to 14.56 kg COD/(m3·d), meanwhile the corresponding hydraulic retention time decreased from 9.0 to 3.6 d. The reactor was able to achieve steady-state within 80 d. Based on the distribution of COD fluxes in the process, it was concluded that anabolism was the main pathway of COD removal in the initial phase (1–33 d), accounting for 57%–85% of total COD removed. As the anaerobic consortium of bacteria reached steady-state (after 70–86 d), the majority of COD removed was transformed into methane, because the specific methane yield was close to the theoretical value (0.36 L CH4/(g CODdeg)).  相似文献   

20.
以生物滤柱为反应器,对污水进行深度处理。试验表明,生物滤层中的菌群由于生化特性的不同,启动阶段异养菌要比自养菌的生长提前一周左右。生物滤柱异养菌、自养菌的形成对稳定运行非常关键,启动阶段较高的COD容积负荷不利于亚硝化、硝化细菌的产生。异养菌在竞争中占有优势,主要生长在滤柱的进水端和悬浮生物膜中。进水有机物浓度较低,造成亚硝化细菌的分布同异养菌分布基本一致。硝化细菌由于较弱的竞争能力,主要生长在滤柱的出水端和吸附生物膜中。底物浓度的改变使生物膜中的菌群对有机物、溶解氧以及生存空间的竞争也发生变化,最终导致其分布也随之改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号