首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Acidic rain has been identified as potentially harmful to the aquatic and terrestrial components of the ecosystem. Sulphate measured in rain and snow has been used as a surrogate indicator of acidic deposition. If sulphur dioxide controls are the means to limit acidic deposition, then the association between sulphate and hydrogen ion concentrations in precipitation is an important factor in establishing such limits. Selected data on rain and snowfall chemistry from the National Atmospheric Deposition Program (NADP), the Electric Power Research Institute's SURE, the utility industries' UAPSP, and the Department of Energy's MAP3S were reviewed. Numerical analyses were performed to assess the relationship between hydrogen and sulphate ion concentrations. The strength of the association between hydrogen and sulphate ions varied from site to site. In the Midwestern and Eastern regions, the Pearson correlation coefficient was over 0.50 while in the Central and Upper Midwestern parts of the United States, the correlation coefficients were less than 0.25. Regardless of the strength of the association between hydrogen and sulphate ions, all but one of the NADP/NTN sites used in our analysis exhibited at least 30% of the anions (sulphate, nitrate, and chloride) associated with cations other than hydrogen. For sites where the strength of the association was weak, between 65% and 98% of the anions appeared to be associated with cations other than hydrogen. Because a large percentage of the anions (i.e. sulphate, nitrate, and chloride) appear to be associated with cations other than hydrogen even at those sites where the association between hydrogen and sulphate ions was strong, the complex chemistry controlling the acidity in precipitation may make it difficult to predict the impact of a reduction in sulphate concentration.  相似文献   

2.
The long-term changes of acidifying deposition in Finland during the period 1973-2000 were studied using bulk deposition data from 19 stations belonging to the national monitoring network. The regional-scale approach (southern, central and northern Finland) was used for trend assessment with respect to implementation of European sulphur (S) emission reduction amendments involving deposition changes prior to (1973-1985) and after (1986-2000) the agreements (S protocols in 1985 and 1994). There were no marked changes in sulphate deposition between the 1970s and 1980s and consistent trends in 1973-1985 were not observed. Deposition of nitrogen (N) compounds, particularly NO3-N, were increasing between the 1970s and 1980s. Deposition of base cations exhibited a slight decline throughout the 1970s and 1980s. Decrease of calcium and magnesium deposition without corresponding decrease in sulphate resulted in increased acidifying potential (AP) of deposition. Due to successful implementation of S (and N) emission reduction measures, sulphate deposition has decreased substantially (30% in northern and up to 60% in southern Finland) since the late 1980s. N deposition also decreased, but less than S deposition. Base cation deposition has also declined substantially, but this decline appeared to be leveling off during the 1990s, accounting for the decrease of AP in deposition. The observed deposition pattern is in agreement with the on-going biochemical recovery of acidified small Finnish lakes taking place since the early 1990s.  相似文献   

3.
Sulphur deposition in Sweden has decreased to less than half of the levels recorded in 1970 and now signs of recovery from acidification of surface waters are beginning to appear. We investigated time trends of water chemistry between 1985 and 1998 in 13 streams draining small forested catchments with generally shallow acid sensitive soils. At nine of the catchments, bulk deposition was monitored as well. Sulphate concentrations decreased in both stream water and deposition, although with somewhat smaller trends in stream water compared with deposition. The magnitude of the trends in sulphate increased from north to south, following a gradient of increasing industrial influence. Five sites in the southern half of the country showed weak signs of recovery from acidification in terms of increasing concentrations of acid neutralising capacity and decreasing concentrations of hydrogen ions, corresponding to annual increases of 0.01 pH units. Changes in stream discharge and concentrations of marine salts and organic acids could not explain the observed decrease in acidity and the results were interpreted as recovery from anthropogenic acidification. For the northern half of Sweden, any changes in water chemistry could be attributed to natural variation in climate and marine influence, and the effect of anthropogenic acidification was negligible.  相似文献   

4.
The South Pennines, an area of acid-sensitive geology at the centre of a major industrial region, have undergone perhaps the most severe historic exposure to sulphur and nitrogen deposition in the UK. This study addresses a lack of existing research on the region by presenting the findings of a survey of 62 surface waters sampled during a 1-week period in April 1998. Results indicate that acidification in the region is acute; 27 of the sampled surface waters had a negative acid neutralising capacity (ANC) and 28 had a pH below 5.0. Minimum recorded pH values were below 4.0. Non-marine sulphate levels were extremely high (median 222 microeq/1), and widespread high nitrate concentrations (median 41 microeq/1) suggest that soils in the region as a whole may be at an advanced stage of nitrogen saturation. A consistent relationship was identified between site acidity and the balance between the major weathering-derived cations, calcium and magnesium, and sulphate. This could in turn be linked to catchment soil type and land use, with the most acidic conditions occurring in peat-dominated catchments, where weathering is minimal and the influence of atmospheric deposition most pronounced. Percentage of peat in each catchment was the single best predictor of surface water acidity. Nitrate concentrations, although not a dominant control on acidity, varied significantly according to land use. Elevated concentrations were observed in catchments containing forestry, due to enhanced deposition inputs, and in catchments containing improved land, linked to fertiliser use. Ammonium concentrations, although low at most catchments, were a significant component of the inorganic nitrogen total in a number of surface waters draining waterlogged peat catchments.  相似文献   

5.
Four experiments were established (1992) in Scots pine stands at distances of 0.5, 2, 4 and 8 km along a line running to the SE of the Cu-Ni smelter at Harjavalta, SW Finland, in order to investigate the effects of Cu and Ni emissions on macronutrient availability and estimates of cation exchange capacity (CEC) and base saturation (BS). The accumulation of Cu and Ni (total, exchangeable) in forest soil close to the smelter has resulted in a deficit of base cations (exchangeable Ca, Mg, K and BS) in the organic layer caused by inhibition of mineralisation and the displacement of base cations from cation exchange sites by Cu and Ni cations. No signs of soil acidification were found in the topmost layers of the soil measured as a change in pH, exchangeable acidity and Al. The determination of CEC by the summation method in heavy-metal polluted forest soils is not recommended unless heavy metal cations are also included in the calculations.  相似文献   

6.
Monthly and annual means of main anions (SO42−, NO3, Cl) and summed base cations (Ca2+, Mg2+, K+, Na+) in bulk precipitation were studied at 10 stations during an 8-year monitoring period. The data showed statistically significant decreasing trends in most cases. Average declines of mean annual volume-weighted concentrations for both anions and cations were about two-fold. Despite the decrease, the loads of S and cations are still relatively high in Estonia (about 4–14 kg S ha−1 and 0.6–1.2 keq ha−1, respectively) compared with the loads in Finland and Sweden. Estimated linear decline trends followed the same pattern as annually combusted oil shale from Estonian power plants and emissions of SO2 and fly ash. Recent trends in chemical composition of bulk precipitation at the monitoring stations reflected economic changes in Estonia as well as transboundary fluxes from neighbouring countries.  相似文献   

7.
The aim of the present study was to determine the long-time trends in concentrations and depositions of major ions in wet precipitation samples collected at 11 sampling sites from the Austrian precipitation chemistry network in the period 1984-1999. The analytical results were treated by the use of least square linear regression method. It is shown that a serious decrease of sulfate (between 30% and 60% for the period) and hydrogen ion (between 60% and 102% for the period) concentrations and depositions is achieved at almost all sampling sites and in most of these cases the linear trend proves to be statistically significant. Nitrogen containing ions and base cations do not reveal a distinct trend of changing and in the majority of the sites the linear models are not adequate. In principle, an overall slight concentration and deposition decrease for these major ions is observed (up to 30% for the period of observation) but some substantial exceptions are also found (site Haunsberg or site Lobau). The changes in chloride concentration and deposition, too, do not indicate significant linear trend and, in general, are decreasing for the period of monitoring. In order to give some explanation of the exceptional behaviour of some of the major ions in several sites, an additional comparison with Austrian emission data (sulfur dioxide, nitrogen oxides, ammonium) and with data from five EMEP sites from neighbouring countries is performed. A significant West-East trend of acidity increase is found as well as a good correlation with the emission trends. Therefore, both transboundary and specific local factors could be substantial factors in the wet precipitation chemistry in the region.  相似文献   

8.
To assess the impacts of the decline in sulphur (S) deposition over the past 20 years in Ontario, soil chemistry and sugar maple (Acer saccharum Marsh) foliar chemistry were measured at 17 sites in south and central Ontario in 2005 and compared with archived samples collected in 1986. Foliar S concentrations were lower in 2005, reflecting the decline in S deposition whereas foliar N remained unchanged, reflecting the lack of change in N deposition in Ontario. Mineral soil pH, exchangeable base cations were lower in 2005 whereas total S, N and cation exchange capacity (CEC) were unchanged. Foliar concentrations of Ca were positively related to soil Ca levels in the A-horizon and were lower in 2005. Despite evidence of increasing soil acidity and losses of calcium, foliar base cation concentrations at most sites were adequate for sugar maple and forest health in terms of canopy appearance (Decline Index) improved.  相似文献   

9.
To reduce atmospheric deposition, in 1990 Congress passed amendments to the Clean Air Act requiring electric utility power plants to decrease emissions of sulfur dioxide and nitrogen oxides, with Phase I beginning in 1995. We analyzed precipitation volume, wet deposition, and concentration of the sum of base cations measured at 12 National Atmospheric Deposition Program sites in Massachusetts, New Hampshire, New York, and Vermont. We compared five-year means prior to and following passage of the amendments and for five years after the implementation of Phase I. Whereas only one of the monitoring stations recorded a decline in base cation deposition, three sites out of the 12 showed a decline in base cation concentration. None of the sites exhibited a significant change in precipitation volume. Continued deposition of base cations may help to reduce the detrimental effects of acidic deposition.  相似文献   

10.
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.  相似文献   

11.
A dynamic soil chemistry model was used to explain the observed decrease in soil base saturation between 1949 and 1984 at three stands in southern Sweden. The results show that acid deposition has caused soil acidification. The model, SAFE (Soil Acidification in Forest Ecosystems), includes the fundamental physical processes such as leaching and accumulation, and chemical processes such as cation exchange, mineral weathering, nutrient uptake and solute equilibrium reactions. The sources and sinks of base cations in the soil system were quantified, showing that weathering, deposition of base cations and depletion of exchangeable base cations supply cations to the soil solution in similar amounts in the upper 1 m during the acidification phase. This demonstrates that budget studies alone cannot be used to distinguish between long-term capacity to resist acidification, represented by weathering, from short-term buffering caused by cation exchange.  相似文献   

12.
The impact of conifer afforestation on stream-water chemistry was investigated in the acidified catchment of Loch Dee, SW Scotland. Long-term trends in stream-water chemistry were evaluated during a period of forest growth from age 6 to 17 years. A significant increase was observed for pH (0.2 units) and a significant decline for aluminium (0.05 mg litre(-1)), sulphate (1.2 mg litre(-1)) and nitrate (0.02 mg litre(-1)) concentrations. The long-term decrease in stream-water acidity was ascribed to the marked reductions in sulphur depositions during the 1970s and early 1980s. There was no evidence that this response had been attenuated by afforestation, the improvements in stream-water chemistry being of a similar magnitude to those recorded in nearby moorland lochs and exceeding that in an adjacent moorland-catchment stream. The lack of a clear forest acidification effect is consistent with deposition-model estimates which show the increased scavenging of occult and dry deposition by the growing forest to be small at this site (相似文献   

13.
Some recent studies of trends in sulphate in surface waters have alluded to possible lag effects imposed by catchment soils, resulting in discrepancies between trends in deposition and run-off. To assess the extent of these possible effects in the UK, sulphate concentration data from the United Kingdom Acid Waters Monitoring Network (AWMN) sites are compared with estimates of sulphur deposition at each site. From these data, input-output budgets are computed at an annual time scale. The estimated budgets suggest a close association between catchment sulphur inputs and outputs at an annual scale, with well-balanced annual budgets at most sites, indicative of only minor lag effects. A similar analysis of the AWMN site nitrogen budget shows little evidence of an association between nitrogen inputs and outputs at this time scale.  相似文献   

14.
Long-term (1987–2012) water quality monitoring in 36 acid-sensitive Swedish lakes shows slow recovery from historic acidification. Overall, strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many acid-sensitive lakes. Base cation concentrations have declined less rapidly than strong acid anion concentrations, leading to an increase in charge balance acid neutralizing capacity. In many lakes, modeled organic acidity is now approximately equal to inorganic acidity. The observed trends in water chemistry suggest lakes may not return to reference conditions. Despite declines in acid deposition, many of these lakes are still acidified. Base cation concentrations continue to decline and alkalinity shows only small increases. A changing climate may further delay recovery by increasing dissolved organic carbon concentrations and sea-salt episodes. More intensive forest harvesting may also hamper recovery by reducing the supply of soil base cations.  相似文献   

15.
Usefulness of a method of artificial foliage was tested for estimation of total ionic inputs from the atmosphere to forest ecosystems, as well as of processes relevant to ionic fluxes through tree canopies: uptake, leaching, passive flow. The studies were performed in Norway spruce and European beech stands in Karkonosze Mountains (Poland), in 1995-97. Artificial leaves of increasing leaf area index: 0, 2, 6 and 12 m(2) m(-2 )were placed above standard rain collectors. It has been found that total atmospheric fluxes of H(+), NH(4)(+), Ca(2+), Mg(2+), Pb(2+), NO(3)(-) and SO(4)(2-) rose as surface area of the foliage increased. This was especially true for nitrate, sulphate and ammonium. No such relationship was found for K(+), Na(+), Zn(2+), Cd(2+), Cu(2+) and PO(4)(3-). The increase in anion fluxes exceeded that in neutralising cations (NH(4)(+), Na(+), K(+), Mg(2+), Ca(2+)) and led to progressive rainwater acidification with the increase in the foliage area. An analysis of net canopy exchange (atmospheric input-throughfall flux) has shown that SO(4)(2-), PO(4)(3-), Na(+), Ca(2+) and Cu(2+) flowed passively through the tree crowns; NH(4)(+), NO(3)(-), Zn(2+), Cd(2+) and occasionally Pb(2+) were efficiently absorbed, whereas K(+) was leached from the canopies. Beech was more effective in modifying ionic pool from the atmosphere than spruce. This related to H(+) (greater absorption) and Mg(2+) (greater leaching). It has been demonstrated that the results concerning trends in net canopy exchange and produced by the simple method of artificial foliage are comparable to more sophisticated techniques of the measurements. This proves the method to be useful.  相似文献   

16.
A Lagrangian dispersion model has been used to predict daily sulphate aerosol in 2006 at five UK rural measurement sites and hourly nitrate aerosol in April 2003 at Harwell (UK). The sensitivity of aqueous phase sulphate production to the meteorological input has been investigated. Large differences were found between cloud fraction and cloud liquid water output from the regional and mesoscale Met Office Unified Model. The impact on the sulphate aerosol was relatively small, with the mesoscale meteorology giving better results.Sulphate aerosol production in the aqueous phase was found to be very sensitive to modelled cloud pH. As the cloud becomes acidic sulphate production is greatly limited, conversely if the cloud is basic large amounts of sulphate aerosol are produced. A fixed model pH of 5.8 was found to produce better results than allowing the model to calculate pH which resulted in large over-predictions of measured sulphate aerosol in some episodes.Nitrate aerosol was not sensitive to cloud variables or pH, but showed a slight increase with 30% more ammonia emissions, and a slight decrease with 30% less ammonia.Sulphate production in model runs with fixed pH was not sensitive to changing ammonia emissions, however the sulphate production with modelled pH was very sensitive to plus or minus 30% ammonia. This work suggests that good modelling of ammonia is essential to correct estimation of aqueous phase sulphate aerosol if cloud pH is modelled. It is concluded that modelling to estimate the effect of reduced ammonia emission scenarios on future ambient aerosol levels should also take into account the neutralising effect of ammonia in cloud and hence the effect on aqueous phase production of sulphate.  相似文献   

17.
Spheroidal carbonaceous particles (SCPs) provide an unambiguous indication of atmospherically deposited contamination from industrial sources. SCP data from a 12 year annual sediment trapping and coring programme at 14 lakes based on the UK Acid Waters Monitoring Network, were used to consider temporal trends in deposition and to compare these with measured non-marine sulphate fluxes. Results show good temporal coherence across a broad area of northern UK and that SCP deposition levels and are now at their lowest since the 1940s, in agreement with modelled sulphate data. SCP fluxes show reasonable linearity with measured non-marine sulphate depositional fluxes from the nearest UK Acid Deposition Monitoring Network sites, especially over the post-flue-gas desulphurisation period, but comparisons prior to 1972 are not possible due to lack of data. We speculate on whether palaeolimnological SCP data might be used to reconstruct the history of non-marine sulphate fluxes from industrial sources.  相似文献   

18.
Soils sampled along an altitudinal transect in an upland area of North East Scotland have been used to investigate downslope changes in the capacity of soils to retain sulphate. Simulated laboratory experiments involving the leaching of reconstituted cores with 'rainfall' containing low (1.85 mg litre(-1) and high (51.90 mg litre(-1) concentrations of sulphate indicate that soils developed on upper slopes have a limited capacity to adsorb sulphate, whereas soils on lower slopes have a much greater sulphate adsorption capacity. Soil drainage water, produced from 'sensitive' upper slope soils may therefore be significantly modified by physico-chemical reactions in lower slopes before reaching watercourses.  相似文献   

19.
An exhausted sand quarry which had filled with acid water (pH 3) from the oxidation of pyrite was treated with calcium hydroxide to neutralize the water (pH 8), and sewage sludge to prevent further ingress of acid. The water remained neutral for 2 years, an appreciable quantity of base being generated by the reduction of sulphate to sulphide in the anoxic sediment formed by the sewage sludge. After this time the water reverted to acid conditions, chiefly because the lake was too shallow to retain the sewage sludge over a sufficiently large area of its bed. Incubation experiments showed that the sewage sludge had a large capacity for sulphate reduction, which was equally efficient in acid or neutral waters and that the areal rate of consumption was sufficiently fast to neutralize all incoming acid, if at least 50% of the lake bed was covered with sludge. Throughout the course of the field investigations there was no foul smell and the lake was quickly colonized by phytoplankton, macrophytes and insects. Although nutrients associated with the sewage sludge stimulated photosynthesis and so caused the generation of additional organic matter, they were exhausted within two years. To ensure permanent reclamation, phosphate fertilizer could be added once the initial supply has been consumed. Neutralization removed trace metals from the system, presumably due to formation of insoluble oxyhydroxide and carbonates. The solubility of aluminium was apparently controlled by a basic aluminium sulphate (jurbanite).  相似文献   

20.
The role of soil and bedrock in acid neutralizing processes has been difficult to quantify because of hydrological and biogeochemical uncertainties. To quantify those roles, hydrochemical observations were conducted at two hydrologically well-defined, steep granitic hillslopes in the Tanakami Mountains of Japan. These paired hillslopes are similar except for their soils; Fudoji is leached of base cations (base saturation <6%), while Rachidani is covered with fresh soil (base saturation >30%), because the erosion rate is 100-1000 times greater. The results showed that (1) soil solution pH at the soil-bedrock interface at Fudoji (4.3) was significantly lower than that of Rachidani (5.5), (2) the hillslope discharge pH in both hillslopes was similar (6.7-6.8), and (3) at Fudoji, 60% of the base cations leaching from the hillslope were derived from bedrock, whereas only 20% were derived from bedrock in Rachidani. Further, previously published results showed that the stream pH could not be predicted from the acid deposition rate and soil base saturation status. These results demonstrate that bedrock plays an especially important role when the overlying soil has been leached of base cations. These results indicate that while the status of soil acidification is a first-order control on vulnerability to surface water acidification, in some cases such as at Fudoji, subsurface interaction with the bedrock determines the sensitivity of surface water to acidic deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号