首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural fallout 210Pb may be extracted from soils with hot, dilute nitric acid without extracting significant quantities of 210Pb produced by decay of radon in the soil. This method was used to determine the distribution of fallout 210Pb in the profiles of nine New Zealand soils. The measured levels were similar to equilibrium cumulative depositions calculated from deposition records. The results indicate that these soils have quantitatively retained fallout 210Pb, with 75–100% of it being concentrated in the top 10 cm of soil. This permanent retention of fallout lead by soils suggests that accumulation of lead in the upper soil layer is likely in areas of aerosol lead pollution.  相似文献   

2.
The influence of horizontal structure of spruce forest on the spatial distribution of acid-soluble Zn, Cd, Pb compounds and 137Cs in the litter and the humus horizon of soddy podzolic soil has been studied in the territory with the regional background level of industrial fallout. It has been found that the distribution pattern of Zn in the forest litter is a result of biogeochemical processes. The litter in fern–wood sorrel microplots contains increased amounts of Zn and Cd, while the contents of Pb and 137Cs are decreased. The distribution patterns of Pb and 137Cs in the litter are positively correlated with each other, since both elements are deposited from the atmosphere, and similar mechanisms account for their redistribution in the spruce forest ecosystem.  相似文献   

3.
Characteristics of carbon storage and density in different layers of forest ecosystems should be studied comprehensively and in more detail. Using forest inventory data in combination with field survey data, we explored the characteristics of carbon storage and density in different layers of forest ecosystems in Liaoning Province of China. Results showed that total carbon storage was 813.034 Tg C. The carbon storage of soil layer accounted for 81.0% of the total storage with 658.783 Tg C, followed by those of arbor, litter and shrub layers with 128.403 Tg C (15.8%), 22.723 Tg C (2.8%) and 3.125 Tg C (0.4%), respectively. The average carbon density for the forest ecosystems were 183.571 Mg C ha–1, with soil layer (148.744 Mg C ha–1) being the highest one, followed by arbor layer (28.992 Mg C ha–1), litter layer (5.131 Mg C ha–1) and shrub-grass layer (0.706 Mg C ha–1). Carbon storage in different forest ecosystems varied from 1.595 to 319.161 Tg C, while C density ranged from 165.067 to 235.947Mg C ha–1, with the highest and lowest values being observed in soil layer and shrub-grass layers, respectively, implying that soil is the main body of forest carbon storage. Young-aged forests accounted for a greater proportion of forests in the Province than forests in other age classes; and proper management of forests could increase the carbon sequestration in the forest ecosystems. The comparison with previous estimations of carbon storage for forest ecosystem implied that methods and data used for forest carbon storage estimation affected the results of estimates obviously.  相似文献   

4.
黔中石漠化地区不同土地利用方式对土壤环境的影响   总被引:5,自引:0,他引:5  
在贵州省普定县喀斯特石漠化地区通过调查分析,对3种土地不同利用方式(Ⅰ封山育林地、Ⅱ退耕还林地、Ⅲ农耕地)土壤物理性质、化学性质及土壤种子库进行了研究。结果表明利用方式的不同对土壤物理性质、化学性质及土壤种子库均产生了显著的影响。土壤容重、土壤毛管孔隙度随土壤扰动的加剧而下降,表现为Ⅰ>Ⅱ>Ⅲ;土壤总孔隙度与非毛管孔隙度呈现出随土壤扰动程度增加而增加的趋势,表现为Ⅲ>Ⅱ>Ⅰ;不同层次之间容重的变异较小,土壤质地比较均一;Ⅱ土壤有机质低于类型Ⅲ和Ⅰ;Ⅰ初步形成了林地环境,林地土壤表现出良性转变。随土壤深度的增加,有机质、全氮、全磷、速效氮表现出减少的趋势,土壤扰动降低了土壤化学性质层次间变异。不同利用方式下土壤种子库物种组成变化不大,土壤中的种子集中分布在表层0~5 cm内,随土层的加深所含种子数量、物种数逐渐降低。不同利用类型的土壤种子数量在0~5 cm层次差异显著(〖WTBX〗p〖WTBZ〗=0.021 897),种子种类差异不显著(〖WTBX〗p〖WTBZ〗=0.097 628)。土壤扰动促进种子向深层传播,退耕还林有利于土壤质量的恢复。  相似文献   

5.
Parameters regarding fate of 63Ni in the soil–plant system (soil: solution distribution coefficient, Kd and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of 63Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm × 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer®) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq 63NiCl2. Maize was harvested 135 days after 63Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of 63Ni by maize was calculated for leaves and kernels. Water drainage and leaching of 63Ni were monitored over the course of the experiment. Values of Kd in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that 63Ni was strongly retained at the soil surface. Prediction of the 63Ni downward transfer could not be reliably assessed using the Kd values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of 63Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.  相似文献   

6.
Plant uptake of 99Tc freshly added to soils was compared with uptake of 99Tc ‘aged’ in soil for more than a decade. A combination of alkaline soil and freshly added 99Tc resulted in elevated uptake into radish foliage (plant/soil concentration ratios ranged from 37 to 46). Neptunium-237 was freshly added to all soils. Neptunium uptake via plant roots into foliage was strongly affected by soil pH. Neptunium uptake was greatest from acidic soils. The observed plant/soil concentration ratios for 237Np under field conditions were approximately 10−2 from acidic soils (pH 5·6–5·7) and were comparable to field concentration ratios for 239Pu, that is 10−3, from a basic soil (pH 7·5).  相似文献   

7.
8.
Nuclear power plants release 14C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of 14C in soils taken within 1 km from a Brazilian nuclear power plant with soils taken within a reference area located 50 km away from the reactor site. Analyses of total carbon, δ13C and 137Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The 137Cs data show that the soils from the base of hills are probably allocthonous.  相似文献   

9.
The aim of the present study was to establish a reference site and its soil characteristics for use of fallout radionuclides in erosion studies in Slovenia. Prior to this study, no reference site and baseline data existed for Slovenia for this purpose. In the agricultural area of Gori?ko in East Slovenia, an undisturbed forest situated in Šalamenci (46°44’N, 16°7’E), was selected to establish the inventory value of fallout 137Cs and to establish a baseline level of multi-elemental fingerprint (major, minor, trace elements including heavy metals) and naturally occurring radionuclides in soils. A total of 20 soil profiles were collected at four 10 cm depth increments for evaluation of baseline level of 137Cs inventory. An exponential distribution for 137Cs was found and the baseline level inventory was established at 7300 ± 2500 Bq m−2 with a coefficient of variation of 34%. Of this mean present-day inventory, approximately 45% is due to the Chernobyl contribution.The physical degradation of soils through erosion is linked with biochemical degradation. This study introduces an approach to establishment of the naturally occurring radionuclide and elemental fingerprints baseline levels at a reference site which can provide comparative data to those from neighbouring agricultural fields for assessment of soil redistribution magnitude using fallout radionuclides. In addition, this information will be used to determine the impact of soil erosion processes and agricultural practices on soil quality and redistribution within agricultural landscapes in Slovenia.  相似文献   

10.
A mathematical model was constructed to simulate the processes of 137Cs migration in peat soils and its uptake by vegetation. Model parameters were assessed and the pattern of 137Cs distribution over soil profile was predicted in case of peat soils, which are typical of the Russian regions contaminated after the Chernobyl accident. The ecological half-life of 137Cs in the plant-root soil zone was calculated, and a long-term prognosis of the radionuclide uptake by plants was made.  相似文献   

11.
The microbial biomass (Cbio), respiration (basal respiration (BR) and potential respiration (PR)), and derived indices for 520 independent soil samples of 117 different soils from the Czech Republic were statistically analysed. The broad range of soil samples allowed the stepwise breakdown of the database into six reasonable categories of soil: arable soils, loamy grassland soils, sandy grassland soils with weak organic matter content, sandy grassland soils with moderate organic matter content, forest soils with moderate organic matter content, and forest organic soils with rich organic matter content. Because soil microbiology lacks benchmarking values, the ranges of the microbial characteristics for these categories were stated and are presented here. The separation into soil groups narrowed the ranges enough to be useful for comparative purposes. The groups displayed significant differences in basal microbial parameters. The lowest microbial biomass was found in arable soils and grassland sandy soils with weak organic matter content. The highest microbial biomass was shown by loamy grassland soils and organic forest soils. Respiration displayed similar results to the microbial biomass. The derived indices revealed less significant differences confirming their inner-standard nature. The relationships between the soil contamination and microbial parameters were not explored because of the confounding effect of soil organic matter. However, it was not shown by the category of grassland sandy soils with weak organic matter content suggesting they could be especially suitable for the biomonitoring of harmful effects of chemicals on soil microorganisms.  相似文献   

12.
Soil respiration rates of a clay-loam textured Acrisol under different uses (Atlantic forest, manioc, horticulture and pasture) from Rio de Janeiro State were measured. The relationship between carbon dioxide (CO2) emissions and soil physico-chemical properties were investigated. Rates of CO2 emission of two sites (Atlantic forest and horticulture) were also evaluated in different seasons in 1997 and 1998. In the forest site, monthly means of measured respiration rates showed good correlation with soil temperature in the range 19.6–24.1°C (r2 = 0.89). In the horticulture site, no change was observed with soil moisture alone, in the range 3.0–13.2 wt%. In the horticulture soil, even when the surface soil was very dry, respiration rates increased in the hot, wetter summer but remained higher than the mean flux from forest soil. The CO2 emission flux of the Acrisol under different use showed good correlation with soil temperature (r2 = 0.72) and moisture (r2 = 0.61).  相似文献   

13.
Long-lived artificial radionuclides (137Cs, 90Sr) were studied in a Eucalyptus plantation located in the south-west of Spain. Radionuclide concentrations were determined in different types of samples corresponding to specific forest components (soil, trees, herbs and litter). Depth profile distributions were obtained in two selected core soils. Two layers were separately measured in three other cores. The concentration factor, defined as the ratio between the mean activity concentration in a component and the mean activity concentration in the soil, was calculated for each component. The biomass of different components was estimated in order to evaluate the total density concentration (Bq/ha) of the artificial radionuclides (137Cs, 90Sr) in the Eucalyptus plantation. The transfer of the radionuclides between the different forest components can be inferred from the results. Additionally, other naturally occurring radionuclides (40K, 226Ra, 228Ra, 228Ac) were determined for comparison. Transport of radionuclides from forest to a nearby pulp mill is also discussed.  相似文献   

14.

We examine the dynamics and spatial determinants of land change in India by integrating decadal land cover maps (1985–1995–2005) from a wall-to-wall analysis of Landsat images with spatiotemporal socioeconomic database for ~630,000 villages in India. We reinforce our results through collective evidence from synthesis of 102 case studies that incorporate field knowledge of the causes of land change in India. We focus on cropland–fallow land conversions, and forest area changes (excludes non-forest tree categories including commercial plantations). We show that cropland to fallow conversions are prominently associated with lack of irrigation and capital, male agricultural labor shortage, and fragmentation of land holdings. We find gross forest loss is substantial and increased from ~23,810 km2 (1985–1995) to ~25,770 km2 (1995–2005). The gross forest gain also increased from ~6000 km2 (1985–1995) to ~7440 km2 (1995–2005). Overall, India experienced a net decline in forest by ~18,000 km2 (gross loss–gross gain) consistently during both decades. We show that the major source of forest loss was cropland expansion in areas of low cropland productivity (due to soil degradation and lack of irrigation), followed by industrial development and mining/quarrying activities, and excessive economic dependence of villages on forest resources.

  相似文献   

15.
三峡库区土壤中硒、碘、氟分布特征与规律研究   总被引:10,自引:2,他引:8  
利用土壤表层样分析成果,研究了三峡库区土壤中硒、碘、氟等生命元素在不同土壤中的含量分布特征,探讨了不同地貌、植被覆盖条件下对其元素分布的影响,结果表明:三峡库区土壤的硒、碘含量较低,而氟含量较高,是低硒、低碘、高氟地区。地质背景是土壤硒、碘、氟的主要来源,灰岩分布区土壤中硒、碘、氟含量均高于其它类母岩分布区土壤,泥岩分布区硒、碘含量最低,砂岩分布区的氟含量最低。除受地质背景控制外,碘、氟还受土壤分布高程、植被等因素的影响。土壤分布高程越低,地形坡度越小,土壤中碘、氟含量越低。针叶林覆盖对土壤碘、氟起富集作用。土壤硒含量受其它因素的影响较土壤碘、氟小。  相似文献   

16.
Here we review some of the main processes and key parameters affecting the mobility of radiocesium in soils of semi-natural areas. We further illustrate them in a collection of soil surface horizons which largely differ in their organic matter contents. In soils, specific retention of radiocesium occurs in a very small number of sorbing sites, which are the frayed edge sites (FES) born out of weathered micaceous minerals. The FES abundance directly governs the mobility of trace Cs in the rhizosphere and thus its transfer from soil to plant. Here, we show that the accumulation of organic matter in topsoils can exert a dilution of FES-bearing minerals in the thick humus of some forest soils. Consequently, such accumulation significantly contributes to increasing 137Cs soil-to-plant transfer. Potassium depletion and extensive exploration of the organic horizons by plant roots can further enhance the contamination hazard. As humus thickness depends on both ecological conditions and forest management. our observations support the following ideas: (1) forest ecosystems can be classified according to their sensitivity to radiocesium bio-recycling, (2) specific forest management could be searched to decrease such bio-recycling.  相似文献   

17.
Fallout 137Cs has been widely used to determine floodplain sedimentation rates in temperate environments, particularly in the northern hemisphere. Its application in low fallout, tropical environments in the southern hemisphere has been limited. In this study we assess the utility of 137Cs for determining rates of floodplain sedimentation in a dry-tropical catchment in central Queensland, Australia. Floodplain and reference site cores were analysed in two centimetre increments, depth profiles were produced and total 137Cs inventories calculated from the detailed profile data. Information on the rates of 137Cs migration through local soils was obtained from the reference site soil cores. This data was used in an advection–diffusion model to account of 137Cs mobility in floodplain sediment cores. This allowed sedimentation rates to be determined without the first year of detection for 137Cs being known and without having to assume that 137Cs remains immobile following deposition. Caesium-137 depth profiles in this environment are demonstrated to be an effective way of determining floodplain sedimentation rates. The total 137Cs inventory approach was found to be less successful, with only one of the three sites analysed being in unequivocal agreement with the depth profile results. The input of sediment from catchment sources that have little, or no, 137Cs attached results in true depositional sites having total inventories that are not significantly different from those of undisturbed reference sites.  相似文献   

18.
The contents of 90Sr and 137Cs and the pattern of their redistribution in the soil and plant cover of floodplain ecosystems have been assessed. It is shown that the radionuclide distribution across the floodplain and along the river flow is determined by the formation of a barrier to their migration near the river channel, at which less mobile 137Cs accumulates. The soil and plant cover of the central floodplain are enriched with 90Sr. Differences in radionuclide migration in floodplain soils and their input into plants are determined by the relationship between the processes of their immobilization and migration with soil water.  相似文献   

19.
Studies on vegetation and permafrost table depth in the zone of sporadic permafrost distribution in the Uksichan River valley (the central Kamchatka Peninsula) have provided evidence that these components of biogeocenosis are interrelated and develop coordinately. In open larch forests with green forest mosses dominating in the ground vegetation layer, the permafrost table lies approximately 60 cm below the soil surface. When the ground vegetation layer is dominated by sphagnums, the permafrost table rises to 40–20 cm. In areas with a dwarf shrub-lichen ground layer, the soil thaw depth increases. A hypothesis is proposed that cyclic successional replacement of plant communities may take place in open larch forests on permafrost soils, including four consecutive stages with dominance of green mosses, sphagnums, lichens, and dwarf shrubs. In areas disturbed by fires, pioneer moss or herbaceous communities develop in the ground layer.  相似文献   

20.
In vitro assays have been developed to determine metal bioaccessibility in contaminated soils; however, their application to Cd is limited. To assess their suitability to determine Cd relative bioavailability (RBA), Cd-RBA in 12 contaminated soils containing 3.00–296 mg kg 1 Cd were determined using a mouse model and compared with Cd bioaccessibility data based on four assays including the UBM, SBRC, IVG, and PBET. After being administered feed amended with soil or CdCl2 for 10-day, the Cd concentrations in the mouse liver and/or kidneys were used as biomarkers to estimate Cd-RBA. Cd-RBA was comparable at 34–90% and 40–78% based on mouse liver and kidneys with RSD of 7.10–8.99%, and 37–84% based on mouse liver plus kidneys with lower RSD of 5.8%. Cadmium bioaccessibility in soils varied with assays, with 61–99, 59–103, 54–107, and 35–97% in the gastric phase and 20–56, 38–77, 42–88, and 19–64% in the intestinal phase of the UBM, SBRC, IVG and PBET assays. Based on the combined biomarker of liver plus kidneys, better correlation was observed for PBET (r2 = 0.61–0.70) than those for IVG, UBM and SBRC assays (0.12–0.52). The monthly Cd intake in children was 0.24–23.9 μg kg 1 using total Cd concentration in soils, which was reduced by 43% to 0.18–12.3 μg kg 1 using bioavailable Cd. Our data suggest it is important to consider Cd-RBA to assess risk associated with contaminated soils and the PBET may have potential to predict Cd-RBA in contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号