首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
Linking Theory and Practice for Restoration of Step-Pool Streams   总被引:1,自引:0,他引:1  
Step-pools sequences are increasingly used to restore stream channels. This increase corresponds to significant advances in theory for step-pools in recent years. The need for step-pools in stream restoration arises as urban development encroaches into steep terrain in response to population pressures, as stream channels in lower-gradient areas require stabilization due to hydrological alterations associated with land-use changes, and as step-pools are recognized for their potential to enhance stream habitats. Despite an increasingly voluminous literature and great demand for restoration using step-pool sequences, however, the link between theory and practice is limited. In this article, we present four unique cases of stream restoration using step-pools, including the evolution of the approaches, the project designs, and adjustments in the system following restoration. Baxter Creek in El Cerrito, California demonstrates an early application of artificial step-pools in which natural adjustments occurred toward geomorphic stability and ecological improvement. Restoration of East Alamo Creek in a large residential development near San Ramon, California illustrates an example of step-pools increasingly used in locations where such a channel form would not naturally occur. Construction of a step-pool channel in Karnowsky Creek within the Siuslaw National Forest, Oregon overcame constraints posed by access and the type and availability of materials; the placement of logs allowed natural scouring below steps. Dry Canyon Creek on the property of the Mountains Restoration Trust in Calabasas, California afforded a somewhat experimental approach to designing step-pools, allowing observation and learning in the future. These cases demonstrate how theories and relationships developed for step-pool sequences over the past two decades have been applied in real-world settings. The lessons from these examples enable us to develop considerations useful for deriving an appropriate course of design, approval, and construction of artificial step-pool systems. They also raise additional fundamental questions concerning appropriate strategies for restoration of step-pool streams. Outstanding challenges are highlighted as opportunities for continuing theoretical work.  相似文献   

3.
Biological Effects of Fine Sediment in the Lotic Environment   总被引:27,自引:0,他引:27  
/ Although sedimentation is a naturally occurring phenomenon inrivers, land-use changes have resulted in an increase in anthropogenicallyinduced fine sediment deposition. Poorly managed agricultural practices,mineral extraction, and construction can result in an increase in suspendedsolids and sedimentation in rivers and streams, leading to a decline inhabitat quality. The nature and origins of fine sediments in the loticenvironment are reviewed in relation to channel and nonchannel sources andthe impact of human activity. Fine sediment transport and deposition areoutlined in relation to variations in streamflow and particle sizecharacteristics. A holistic approach to the problems associated with finesediment is outlined to aid in the identification of sediment sources,transport, and deposition processes in the river catchment. The multiplecauses and deleterious impacts associated with fine sediments on riverinehabitats, primary producers, macroinvertebrates, and fisheries are identifiedand reviewed to provide river managers with a guide to source material. Therestoration of rivers with fine sediment problems are discussed in relationto a holistic management framework to aid in the planning and undertaking ofmitigation measures within both the river channel and surrounding catchmentarea.KEY WORDS: Sedimentation; Fine sediment; Holistic approach; Ecologicalimpact; River restoration  相似文献   

4.
Environmental impacts of the construction-phase drainage congestion along the Dhaka City Flood Control Embankment were assessed by a pilot questionnaire survey (in 1991) among the target population adjacent to the embankment. The results of the survey indicated that, despite significant alleviation of river flooding, the majority of the respondents experienced a new type of flood problem in the form of stagnant water inside the embankment, immediately following its construction. Not only had this stagnant water flooded and damaged their property, it had exposed them to a number of other environmental problems, such as accumulation of municipal sewage, foul odors, mosquitoes, and growth of water hyacinth. The study found that the respondents' assessments of these environmental problems differed significantly according to the magnitude of the impact of stagnant water upon two subgroups within the target population. A postsurvey follow-up in 1994 indicated that this problem of drainage congestion had largely been alleviated by completing the construction of a number of drainage regulators. The study concludes by stressing the importance of synchronizing the construction of drainage structures with that of the embankment systems and by underlining policy implications for flood-vulnerable land use adjacent to embankments.  相似文献   

5.
Most nonpoint source pollution problems on forest lands can be controlled by careful planning and management of specific critical areas. Critical areas include sites with high mass and surface erosion hazards, overland flow areas, and the riparian zone. Some guides for identifying critical areas are presented along with examples of land-use constraints that might be applied.  相似文献   

6.
Portovelo-Zaruma, Ecuador is an artisanal and small-scale gold mining (ASGM) region with approximately 6000 gold miners working with mercury and cyanide. Although artisanal gold mining (AGM) has taken place in Portovelo-Zaruma for centuries, highly mechanized small-scale gold mining (SGM) processing plants capable of increased throughput began being built in the 1990s. While there are benefits associated with ASGM, there are also negative impacts experienced by the miners and the surrounding communities. To take advantage of ASGM as a poverty-alleviating mechanism while reducing unwanted externalities, the cumulative impacts must be understood. Numerous challenges to measuring, monitoring, and addressing ASGM impacts result from the complexity of the impacts themselves, the nature of the gold mining as an informal industry, and the shortfalls in the current regulatory framework. These are discussed in the context of ongoing, unresolved issues including efforts to address trans-boundary water pollution, management of mining waste, and conflicts regarding priorities, ambiguities, and enforcement of existing regulations and policies. Internationally, interventions to address both AGM and SGM impacts have typically focused almost exclusively on technological changes through the elimination of mercury use. Our analysis suggests that to better address ASGM and their cumulative impacts in Ecuador, it will be beneficial to revisit the legal definitions of AGM and SGM. Additionally, promotion of information-based strategies including educational outreach programs and cross-scale and cross-level mitigation methods may also be beneficial. The success of these strategies to reduce ASGM-related cumulative impacts will depend on sufficient funding and the commitment of stakeholders.  相似文献   

7.
A detailed evaluation of past wetland restoration projects in San Francisco Bay was undertaken to determine their present status and degree of success. Many of the projects never reached the level of success purported and others have been plagued by serious problems. On the basis of these findings, it is debatable whether any sites in San Francisco Bay can be described as completed, active, or successful restoration projects at present. In spite of these limited accomplishments, wetland creation and restoration have been adopted in the coastal permit process as mitigation to offset environmental damage or loss of habitat. However, because the technology is still largely experimental, there is no guarantee that man-made wetlands will persist as permanent substitutes for sacrificed natural habitats. Existing permit policies should be reanalyzed to insure that they actually succeed in safeguarding diminishing wetlands resources rather than bartering them away for questionable habitat substitutes. Coastal managers must be more specific about project requirements and goals before approval is granted. Continued research on a regional basis is needed to advance marsh establishment techniques into a proven technology. In the meantime, policies encouraging or allowing quid pro quo exchanges of natural wetlands with man-made replacements should proceed with caution. The technology and management policies used at present are many steps ahead of the needed supporting documentation.  相似文献   

8.
The Axios River delta and the Inner Thermaikos Gulf coastal zone have experienced a long period of human interventions during the past 100 years. A post-evaluation of long run coastal zone changes under the Drivers-Pressures-State-Impacts-Response (DPSIR) conceptual framework is presented. The DPSIR approach is then used to project out into possible futures in order to connect with policy and management options proposed for the improvement of the current conditions and the achievement of sustainable development, in the coastal zone. Socio-economic driving forces with their origins in the end of the 19th century have generated numerous pressures in the coastal environment that changed the state of the environment. In the first part of the last century, there was no coupling between change of state and policy. Due to increasing environmental awareness, a coupling became more apparent over the last thirty years. Human interventions include river route realignment, extensive drainage of the plains, irrigation network, roads and dam constructions. The consequences were positive for the economic development of the area, human health, and navigation for the port of Thessaloniki. In contrast, the manipulation and over-use of natural resources has led to a reduction of wetlands, biodiversity loss, stress on freshwater supplies, and subsidence of coastal areas, aquifer salinization, and rapid coastal erosion. Three plausible future scenarios are utilised in order to investigate the implications of this environmental change process and possible socio-economic consequences.  相似文献   

9.
Since the 1970s, the sediment flux of the Yellow River to the sea has shown a marked tendency to decrease, which is unfavorable for wetland protection and oil extraction in the Yellow River delta. Thus, an effort has been made to elucidate the relation between the sediment flux to the sea and the drainage basin factors including climate and human activities. The results show that the sediment flux to the sea responds to the changed precipitation in different ways for different runoff and sediment source areas in the drainage basin. If other factors are assumed to be constant, when the annual precipitation in the area between Longmen and Sanmenxia decreases by 10 mm, the sediment flux to the sea will decrease by 27.5 million t/yr; when the precipitation in the area between Hekouzhen and Longmen decreases by 10 mm, the sediment flux to the sea will decrease by 14.3 million t/yr; when the precipitation in the area above Lanzhou decreases by 10 mm, the sediment flux to the sea will decrease by 17.4 million t/yr. A multiple regression equation has been established between the sediment flux to the sea and the influencing factors, such as the area of land terracing and tree and grass planting, the area of the land created by the sediment trapped by check dams, the annual precipitation, and the annual quantity of water diversion by man. The equation may be used to estimate the change in the sediment flux to the sea when the influencing variables are further changed, to provide useful knowledge for the environmental planning of the Yellow River drainage basin and its delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号