首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Abstract: Human land uses surrounding protected areas provide propagules for colonization of these areas by non‐native species, and corridors between protected‐area networks and drainage systems of rivers provide pathways for long‐distance dispersal of non‐native species. Nevertheless, the influence of protected‐area boundaries on colonization of protected areas by invasive non‐native species is unknown. We drew on a spatially explicit data set of more than 27,000 non‐native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non‐native species. The number of records of non‐native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non‐native plants. The number of non‐native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human‐induced disturbance, only the density of major roads outside the protected area significantly increased the number of non‐native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably.  相似文献   

4.
The Role of Roadsides in Plant Invasions: a Demographic Approach   总被引:7,自引:0,他引:7  
Abstract:  Non-native plant species are common along roadsides, but presence does not necessarily indicate spread along the road axis. Roadsides may serve merely as habitat for a species spreading independently of roads. The potential conduit function of roads depends on the habitat specificity of the spreading species, its dispersal range relative to the spacing of roads in the landscape, and the relative importance of long- and short-range dispersal. We describe a demographic model of the road × species interaction and suggest methods of assessing conduit function in the field based on the model results. A species limited to roadside habitat will be constrained to spread along the road axis unless its long-range dispersal is sufficient to carry it across the intervening unfavorable area to another road. It will propagate along a road corridor at a rate determined by the scale of short-range dispersal. Effective management of an invasion requires distinguishing between the habitat and conduit functions, a distinction difficult to make with only snapshot data. Invasions can be reconstructed by several methods, but none is totally satisfactory. We suggest comparing stem distributions on transects parallel and perpendicular to the road axis, and beside the road, and away from it, with an idealized Gaussian curve. Such comparisons would allow discrimination between pattern determined by habitat suitability and pattern reflecting random and facilitated dispersal.  相似文献   

5.
The Horticultural Trade and Ornamental Plant Invasions in Britain   总被引:6,自引:0,他引:6  
Abstract:  Ornamental horticulture has been recognized as the main pathway for plant invasions worldwide. We examined the link between propagule pressure created by the presence of ornamental plants in the market and their ability to escape from cultivation and establish in the wild. A random sample of 534 non-native ornamental species on sale in nineteenth century Britain showed that 27% of these species were recorded growing outside cultivation and 30% of those were established. Species that had escaped from cultivation were more frequently on sale both in the nineteenth century and today than nonescaping species. We used logit regression models to identify biological and socioeconomic variables that affect species' abilities to escape cultivation and become established. Frequencies in the market in the nineteenth century and today were good explanatory variables that distinguished escaping from nonescaping species, whereas for the transition from casual to established status these two socioeconomic variables were either absent or only of weak significance. Biological characteristics that increased the probability that a species would escape from cultivation were species height, a European native range, and being an annual. Climbing plants and species intolerant of low temperatures were less likely to escape. In contrast, the establishment probability was greater if the species belonged to a genus native to Britain and increased as the number of continents in a plant's native range increased. Annual plants had a reduced probability of establishment. Market presence, prices, and the date of introduction are among the socioeconomic factors that have had important effects on the observed course of invasions.  相似文献   

6.
7.
Abstract:  Despite many successful reintroductions of large mammalian herbivores throughout the world, remarkably little attention has focused on how these actions affect native and exotic vegetation at reintroduction sites. One such herbivore is tule elk ( Cervus elaphus nannodes ), which was on the brink of extinction in the mid 1800s, but now has numerous stable populations due to intensive reintroduction efforts. Here, we summarize results from a 5-year exclosure experiment that explored the effects of tule elk on a coastal grassland in northern California. Elk significantly altered the species composition of this community; the response of annual species (dominated heavily by exotic taxa) was dramatically different from perennial species. Elk herbivory increased the abundance and aboveground biomass of native and exotic annuals, whereas it either had no effect on or caused significant decreases in perennials. Elk also decreased the cover of native shrubs, suggesting that these herbivores play an important role in maintaining open grasslands. In addition, elk significantly reduced the abundance and biomass of a highly invasive exotic grass , Holcus lanatus, which is a major problem in mesic perennial grasslands. Our results demonstrate that the successful reintroduction of a charismatic and long-extirpated mammal had extremely complex effects on the plant community, giving rise to both desirable and undesirable outcomes from a management perspective. We suspect that these kinds of opposing effects are not unique to tule elk and that land managers will frequently encounter them when dealing with reintroduced mammals.  相似文献   

8.
Abstract: The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis). Nevertheless, several components of this hypothesis, including the role of generalist herbivores, remain relatively unexplored. We used repeated censuses of exclosures and paired controls to investigate the role of a generalist herbivore, white‐tailed deer (Odocoileus virginianus), in the invasion of 3 exotic plant species (Microstegium vimineum, Alliaria petiolata, and Berberis thunbergii) in eastern hemlock (Tsuga canadensis) forests in New Jersey and Pennsylvania (U.S.A.). This work was conducted in 10 eastern hemlock (T. canadensis) forests that spanned gradients in deer density and in the severity of canopy disturbance caused by an introduced insect pest, the hemlock woolly adelgid (Adelges tsugae). We used maximum likelihood estimation and information theoretics to quantify the strength of evidence for alternative models of the influence of deer density and its interaction with the severity of canopy disturbance on exotic plant abundance. Our results were consistent with the enemy release hypothesis in that exotic plants gained a competitive advantage in the presence of generalist herbivores in the introduced range. The abundance of all 3 exotic plants increased significantly more in the control plots than in the paired exclosures. For all species, the inclusion of canopy disturbance parameters resulted in models with substantially greater support than the deer density only models. Our results suggest that white‐tailed deer herbivory can accelerate the invasion of exotic plants and that canopy disturbance can interact with herbivory to magnify the impact. In addition, our results provide compelling evidence of nonlinear relationships between deer density and the impact of herbivory on exotic species abundance. These findings highlight the important role of herbivore density in determining impacts on plant abundance and provide evidence of the operation of multiple mechanisms in exotic plant invasion.  相似文献   

9.
Abstract:  Factors that negatively affect the quality of wildlife habitat are a major concern for conservation. Non-native species invasions, in particular, are perceived as a global threat to the quality of wildlife habitat. Recent evidence indicates that some changes to understory plant communities in northern temperate forests of North America, including invasions by 3 non-native plant species, are facilitated by non-native earthworm invasion. Furthermore, non-native earthworm invasions cause a reduction in leaf litter on the forest floor, and the loss of forest leaf litter is commonly associated with declines in forest fauna, including amphibians. We conducted a mark-recapture study of woodland salamander abundance across plant invasion fronts at 10 sites to determine whether earthworm or plant invasions were associated with reduced salamander abundance. Salamander abundance declined exponentially with decreasing leaf litter volume. There was no significant relationship between invasive plant cover and salamander abundance, independent of the effects of leaf litter loss due to earthworm invasion. An analysis of selected salamander prey abundance (excluding earthworms) at 4 sites showed that prey abundance declined with declining leaf litter. The loss of leaf litter layers due to non-native earthworm invasions appears to be negatively affecting woodland salamander abundance, in part, because of declines in the abundance of small arthropods that are a stable resource for salamanders. Our results demonstrate that earthworm invasions pose a significant threat to woodland amphibian fauna in the northeastern United States, and that plant invasions are symptomatic of degraded amphibian habitat but are not necessarily drivers of habitat degradation.  相似文献   

10.
Abstract: We examined the roles of dispersal mechanism, a biological barrier; light availability, an environmental barrier; and level of disturbance, a physical barrier, in explaining the spatial patterns of exotic plant species along road and stream segments in a forest landscape in the western Cascade Range of Oregon (U.S.A). The presence or absence of 21 selected exotic plant species and light levels were observed along 0.3- to 1.0-km transects within four habitat types. Each habitat represented a different level of disturbance: high-use roads, low-use roads, abandoned roads, and streams in the H. J. Andrews Experimental Forest. Nearly 300 50 × 2–m sampling units were surveyed along five transects in each habitat type. We used ordination (nonmetric multidimensional scaling) and logistic regression to analyze data. All of the nearly 200 sampling units along roads with high and low levels of vehicle traffic contained at least one exotic plant species, and some contained as many as 14. Streams that were most recently disturbed by floods 20–30 years ago and abandoned spur roads with no traffic for 20–40 years also had numerous exotic species. Roads and streams apparently serve multiple functions that enhance exotic species invasion in this landscape: they act as corridors or agents for dispersal, provide suitable habitat, and contain reservoirs of propagules for future episodes of invasion. Species-specific dispersal mechanisms, habitat characteristics, and disturbance history each explain some, but not all, of the patterns of exotic species invasion observed in this study.  相似文献   

11.
12.
13.
14.
Abstract:  Roads are important components of landscapes; they fragment habitat, facilitate invasive species spread, alter hydrology, and influence patterns of land use. Previous research on the ecological impacts of roads may have underestimated their effect because currently available sources of road data do not include the full road network. We compared differences in road density and landscape pattern among U.S. Census Bureau TIGER line files, U.S. Geological Survey 1:100,000-scale digital line graphs, and U.S. Geological Survey 1:24,000-scale digital raster graphics in northern Wisconsin to road data derived from 1:40,000-scale digital orthophotos. Road density measured from digital orthophotos (2.82 km/km2) was significantly greater than that of digital raster graphics (1.62 km/km2) and more than double that of digital line graphs (1.21 km/km2) and TIGER (1.27 km/km2) data. The increased road densities in raster graphics and orthophoto data were mainly due to the addition of minor roads. When all roads were used to define patch boundaries, landscape metrics produced with orthophoto data showed significantly greater levels of fragmentation than those based on line or raster graphics. For example, maximum patch size was 1074 ha and total edge was 109 km for line graphs, compared with 686 ha and 211 km for orthophoto data. Roads are missing in commonly used data, primarily because mapping standards systematically exclude minor roads. These standards are not ecologically based and may result in false assumptions about the ecological effects of roads. We recommend that future studies take special consideration of the completeness of road data and consider whether all ecologically relevant roads are included.  相似文献   

15.
Abstract: The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long‐term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry‐forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks—livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb–shrub richness in the livestock‐free block, but had no effect on that of tree seedlings in either livestock block. Tree‐seedling and herb–shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana‐free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey‐dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long‐term protection of these forests as viable tiger habitats.  相似文献   

16.
Fragmentation of Landscape as a Cause for Genetic Subdivision in Bank Voles   总被引:11,自引:0,他引:11  
Abstract: We studied the barrier effects of various roadways on the genetic subdivision of bank vole (Clethrionomys glareolus) populations. Allele frequencies, genetic variability, and genetic distances of natural populations were calculated based on polymorphism of seven microsatellite markers. We compared bank vole populations in control areas without such barriers with animals from both sides of a country road, a railway, and a highway. Using F and R statistics, we demonstrated significant population subdivision in bank vole populations separated by the highway, but not in populations on either side of the other roadways or in the control area. Correlations between geographic and genetic distances were revealed by an extended method based on a Mantel analysis. This allowed us to measure genetic barrier effects and express them as additional geographic distances. For instance, statistically significant differences in allele frequencies in all seven loci examined existed among populations in southern Germany and Switzerland, which are separated by the Rhine River and Lake Constance. The real geographic distance between bank vole populations in Konstanz and those in Lengwil, Switzerland, was 6 km. According to this analysis the genetic barrier effect of the Rhine could be defined as an additional distance of 7.7 km. This study shows for the first time that not only old geographic barriers but also more recent fragmentation of landscape by, for example, highways has an important effect on gene flow and the genetic substructuring of populations, which should be considered in future environmental impact assessments.  相似文献   

17.
18.
19.
Abstract:  Wilderness areas are protected and valued in part for recreation; recreational use, however, can negatively impact these areas. In particular, recreational use can facilitate transport of non-native propagules and create open sites for establishment of non-native species. We examined the role of recreational portage trails in the introduction and establishment of non-native plants into the Boundary Waters Canoe Area Wilderness of northern Minnesota (U.S.A.). On 20 portages, we sampled non-native plant richness and cover at four distances (0, 10, 25, and 50 m) from trails. Non-native richness and cover were not related to distance from wilderness entry point. Non-native richness and cover were, however, negatively related to distance from trails. All six non-native species we observed were either directly on or within 1 m of trails. These results suggest that recreational trails act as corridors facilitating invasions of non-native plants into wilderness areas. It remains unclear, however, whether these effects are caused by dispersal of propagules, creation of bare ground, or changes in the native plant community.  相似文献   

20.
Species richness of native, rare native, and exotic understorey plants was recorded at 120 sites in temperate grassy vegetation in New South Wales. Linear models were used to predict the effects of environment and disturbance on the richness of each of these groups. Total native species and rare native species showed similar responses, with richness declining on sites of increasing natural fertility of parent material as well as declining under conditions of water enrichment (resulting from human-induced changes in drainage characteristics, leading to increased run-off), severe livestock grazing, and soil disturbance. The response of rare native species to water enrichment, however, was significantly greater than that of all native species. Exotic species richness varied in reverse to that of native species with positive responses to water enrichment and soil disturbance. The contrasting behaviors are attributed to differences in the evolutionary history of native and exotic assemblages and their resulting preadaptations to a landscape recently subjected to agricultural settlement. It would appear that for exogenous disturbances, the intermediate disturbance hypothesis is not supported by our data. In the sampled region, pastures represent the major land-use in terms of area, but have relatively low densities of native and rare species compared with more lightly grazed areas. However, their management is considered to be essential to the maintenance of diversity on a regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号