首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Microbial dechlorination of three PCB congeners in river sediment.   总被引:3,自引:0,他引:3  
B V Chang  W G Liu  S Y Yuan 《Chemosphere》2001,45(6-7):849-856
We investigated the potential for the anaerobic degradation of three PCB congeners (2,3,5,6-CB, 2,3,4,5-CB, and 2,3,4,5,6-CB) in sediments collected from five monitoring sites along the Keelung River in northern Taiwan. Optimal conditions for congener dechlorination were 30 degrees C and pH 7.0. Intermediate 2,3,4,5-CB products were identified as 2,3,5-CB, 2,4,5-CB, and 2,5-CB. Intermediate 2,3,4,5,6-CB products were identified as 2,3,5,6-CB, 2,3,6-CB, and 2,5-CB. For 2,3,5,6-CB, intermediate products were identified as 2,3,6-CB and 2,5-CB. Dechlorination rates for PCB congeners were observed as (fastest to slowest): 2, 3, 4-CB > 2, 3, 4, 5-CB > 2, 3, 4, 5, 6-CB > 2, 3, 5, 6-CB > 2, 2', 3, 3', 4, 4'-CB > 2, 2', 4, 4' 6, 6'-CB > 2, 2', 3, 4, 4', 5, 5'-CB > 2, 2', 3, 3', 4, 4', 5, 5'-CB. Rates decreased for mixtures of the eight congeners. Dechlorination rates for the three primary congeners under different reducing conditions occurred in the order of (fastest to slowest): methanogenic condition > sulfate-reducing condition > nitrate-reducing condition. Under methanogenic and sulfate-reducing conditions, dechlorination rates were enhanced by the addition of lactate, pyruvate, or acetate, but delayed by the addition of manganese oxide, or ferric chloride. Under nitrate-reducing condition, dechlorination rates were delayed by the addition of lactate, pyruvate, acetate, manganese oxide or ferric chloride. Treatment with such microbial inhibitors as bromoethanesulfonic acid (BESA) or molybdate revealed that methanogen and sulfate-reducing bacteria were involved in the dechlorination of these three PCB congeners.  相似文献   

2.
The potential of a chlorophenol (CP)-adapted consortium to dechlorinate polychlorinated biphenyls (PCBs) in sewage sludge was investigated. Results show that dechlorination rates differed significantly depending on sludge source and PCB congener. Higher total solid concentrations in sewage sludge and higher concentrations of chlorine in PCB resulted in slower dechlorination rates. No significant difference was found for 2,3,4,5-CB dechlorination from pH 6.0 to pH 8.0; however, dechlorination did not occur at pH 9.0 during a 41-day incubation period. Results show that at concentrations of 1 to 10 mg/L, the higher the PCB concentration, the faster the dechlorination rate. In addition, dechlorination rates were in the following order: methanogenic conditions > sulfate-reducing conditions > denitrifying conditions. The addition of acetate, lactate, pyruvate, and ferric chloride decreased lag times and enhanced dechlorination; however, the addition of manganese dioxide had an inhibitory effect. Dechlorination rates were also enhanced by the addition of PCB congeners, including 2,3,4-CB, 2,3,4,5-CB and 2,3,4,5,6-CB in mixture. Overall results show that the CP-adapted consortium has the potential to enhance PCB dechlorination. The optimal dechlorination conditions presented in this paper may be used as a reference for feasibility studies of PCB removal from sludge.  相似文献   

3.
Stable hydrogen isotopes of two chlorinated solvents, trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA), provided by five different manufacturers, were determined and compared to their carbon and chlorine isotopic signatures. The isotope ratio for delta2H of different TCEs ranged between +466.9 per thousand and +681.9 per thousand, for delta13C between -31.57 per thousand and -27.37 per thousand, and for delta37Cl between -3.19 per thousand and +3.90 per thousand. In the case of the TCAs, the isotope ratio for delta2H ranged between -23.1 per thousand and +15.1 per thousand, for delta13C between -27.39 per thousand and -25.84 per thousand, and for delta37Cl between -3.54 per thousand and +1.39 per thousand. As well, a column experiment was carried out to dechlorinate tetrachloroethylene (PCE) to TCE using iron. The dechlorination products have completely different hydrogen isotope ratios than the manufactured TCEs. Compared to the positive values of delta2H in manufactured TCEs (between +466.9 per thousand and +681.9 per thousand), the dechlorinated products had a very depleted delta2H (less than -300 per thousand). This finding has strong implications for distinguishing dechlorination products (PCE to TCE) from manufactured TCE. In addition, the results of this study show the potential of combining 2H/1H analyses with 13C/12C and 37Cl/35Cl for isotopic fingerprinting applications in organic contaminant hydrogeology.  相似文献   

4.
The effect of acclimating anaerobic granules from commercial bioreactors with different carbon/electron sources on their ability to reductively dechlorinate a tri-(2,3,4-CB) and heptachlorobiphenyl (2,2',3,3',4,5,6-CB) was studied. The anaerobic granules were first grown in upflow anaerobic sludge blanket (UASB) reactors fed with two different mixtures of carbon/electron sources, i.e., propionate/butyrate/methanol and formate/methanol. Differences in dechlorination patterns for 2,2',3,3',4,5,6-CB were observed in batch experiments inoculated with granules from these two sets of UASB reactors. Variation of the carbon/electron source, during the dechlorination process, had no effect on the dechlorination pathway, but the extents and rates of dechlorination were highest for ethanol and formate and lowest for pyruvate fed batches. Pre-acclimation of different anaerobic sludges to polychlorinated biphenyls (PCBs) shortened the lag period, but did not influence the PCB dechlorination pathway. This is the first time that similar acclimation conditions for several anaerobic microbial communities prior to inoculation were reported to yield similar substrate specificities for the reductive dechlorination of specific PCB congeners. This research demonstrates a successful strategy for the development of biocatalysts to serve as the inoculum of partially decontaminated sites in order to provide microorganisms with specificities complementary to those of naturally occurring dechlorinators.  相似文献   

5.
Winchell LJ  Novak PJ 《Chemosphere》2008,71(1):176-182
Polychlorinated biphenyls (PCBs) are toxic compounds ubiquitously distributed in ecosystems. Microbial attenuation of these contaminants is a potential means of remediation. Two promising microbial PCB remediation technologies, biostimulation and bioaugmentation, were investigated in different sediments. Biostimulation experiments in which electron donor was supplied (H2 via elemental iron, Fe(0)) resulted in only a marginal improvement in the dechlorination of amended 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB), likely because of an inadequate population of indigenous H2-utilizing dechlorinators. Extensive dechlorination was observed, however, after bioaugmenting microcosms with a PCB-dechlorinating enrichment culture. Dechlorination of 2,3,4,5-CB began prior to the 20th day of incubation and proceeded to 2-chlorobiphenyl. This extensive dechlorination activity was maintained in both sediments over 70d at 10 and 25 degrees C. This research demonstrates that although past studies of biostimulation were promising, a great deal must be known about the PCB-dechlorinating organisms present before successful biostimulation is expected. Bioaugmentation, however, appears to be a promising PCB remediation strategy and should be further pursued.  相似文献   

6.
William A. Williams 《Chemosphere》1994,28(12):2269-2284
Anaerobic reductive dechlorination of polychlorinated biphenyls (PCBs) in heat treated, bromoethanesulfonate (BES) treated, and untreated slurries of PCB-contaminated upper Hudson River sediment was investigated to better understand the microorganisms that mediate this process. Extensive meta-and para-dechlorination of Aroclor 1242 and 2,3,4-trichlorobiphenyl (2,3,4-CB) occurred in both the untreated and heat treated slurries. Heat treatment of the slurries eliminated methanogenesis, enhanced 2,3,4-CB dechlorination, and caused extensive meta- and para-dechlorination of Aroclor 1242 earlier than in untreated slurries. BES treatment (1 mM) of the slurries caused a 90% reduction in methanogenesis and inhibited metadechlorination of PCB congeners containing 2,3- and 2,5-dichlorophenyl groups. The results suggest that there are at least two distinct microbial PCB reductive dechlorination activities in PCB-contaminated upper Hudson River sediment, a meta-dechlorination activity and a para-dechlorination activity on Aroclor 1242. Both of these microbial activities are apparently not methanogenic and are resistant to or activated by heat treatment. In addition, the meta- but not the para-dechlorinating activity is inhibited by BES treatment.  相似文献   

7.
Polychlorobiphenyl (PCB) biodegradation was followed for 1 year in microcosms containing marine sediments collected from Mar Piccolo (Taranto, Italy) chronically contaminated by this class of hazardous compounds. The microcosms were performed under strictly anaerobic conditions with or without the addition of Dehalococcoides mccartyi, the main microorganism known to degrade PCBs through the anaerobic reductive dechlorination process. Thirty PCB congeners were monitored during the experiments revealing that the biodegradation occurred in all microcosms with a decrease in hepta-, hexa-, and penta-chlorobiphenyls (CBs) and a parallel increase in low chlorinated PCBs (tri-CBs and tetra-CBs). The concentrations of the most representative congeners detected in the original sediment, such as 245-245-CB and 2345-245-CB, and of the mixture 2356-34-CB+234-245-CB, decreased by 32.5, 23.8, and 46.7 %, respectively, after only 70 days of anaerobic incubation without any bioaugmentation treatment. Additionally, the structure and population dynamics of the microbial key players involved in the biodegradative process and of the entire mixed microbial community were accurately defined by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in both the original sediment and during the operation of the microcosm. The reductive dehalogenase genes of D. mccartyi, specifically involved in PCB dechlorination, were also quantified using real-time PCR (qPCR). Our results demonstrated that the autochthonous microbial community living in the marine sediment, including D. mccartyi (6.32E+06 16S rRNA gene copy numbers g?1 sediment), was able to efficiently sustain the biodegradation of PCBs when controlled anaerobic conditions were imposed.  相似文献   

8.
Chen IM  Chang FC  Hsu MF  Wang YS 《Chemosphere》2001,43(4-7):649-654
A comparison was made of reductive dechlorination occurrences of polychlorinated biphenyls (PCBs) by microorganisms collected from contaminated sediments including Er-Jen River (Tainan, Taiwan), Hudson River (Ft. Edward, NY), Silver Lake (Pittsfield, MA) and Puget Sound (Washington State). Comparisons was made in terms of chromatographic data (referring to the biological activity, including microbial availability) and thermodynamic data (demonstrating the selectivity of anaerobic microorganisms in the dechlorination of chlorinated compounds). Chromatographic data was established in terms of difference in relative retention time (delta ln RRT) and thermodynamic data was estimated as heat of reaction (delta H(r)0). Both were calculated and correlated to occurrences of dechlorination reactions. Observed dechlorination reactions for individually introducing PCB congener had delta ln RRT levels measured as >0.47 (Er-Jen River), >0.29 (Hudson River), >0.36 (Silver Lake) and >0.45 (Puget Sound, for Aroclor 1254 dechlorination). Critical of delta H(r)0 and delta ln RRT values showed that Hudson River and Silver Lake microorganisms were capable of dechlorinating PCBs through reactions with larger H(r)0 value (lower levels of released energy) and smaller delta ln RRT value compared with those found in Er-Jen River and Puget Sound sediments. Differences in the critical delta ln RRT values of these sediments may be due to differences in their levels of PCB contamination.  相似文献   

9.
During reductive dechlorination of trichloroethene (TCE) by zero-valent iron, stable carbon isotopic values of residual TCE fractionate significantly and can be described by a Rayleigh model. This study investigated the effect of observed reaction rate, surface oxidation and iron type on isotopic fractionation of TCE during reductive dechlorination. Variation of observed reaction rate did not produce significant differences in isotopic fractionation in degradation experiments. However, a small influence on isotopic fractionation was observed for experiments using acid-cleaned electrolytic iron versus experiments using autoclaved electrolytic iron, acid-cleaned Peerless cast iron or autoclaved Peerless cast iron. A consistent isotopic enrichment factor of epsilon = -16.7/1000 was determined for all experiments using cast iron, and for the experiments with autoclaved electrolytic iron. Column experiments using 100% cast iron and a 28% cast iron/72% aquifer matrix mixture also resulted in an enrichment factor of -16.9/1000. The consistency in enrichment factors between batch and column systems suggests that isotopic trends observed in batch systems may be extrapolated to flowing systems such as field sites. The fact that significant isotopic fractionation was observed in all experiments implies that isotopic analysis can provide a direct qualitative indication of whether or not reductive dechlorination of TCE by Fe0 is occurring. This evidence may be useful in answering questions which arise at field sites, such as determining whether TCE observed down-gradient of an iron wall remediation scheme is the result of incomplete degradation within the wall, or of the dissolved TCE plume by passing the wall.  相似文献   

10.
The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.  相似文献   

11.
Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. >9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and delta13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched delta13C values compared to the upgradient mean. In addition, delta13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.  相似文献   

12.
Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g?1 of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity.  相似文献   

13.
Wu BZ  Chen HY  Wang SJ  Wai CM  Liao W  Chiu K 《Chemosphere》2012,88(7):757-768
Technologies such as thermal, oxidative, reductive, and microbial methods for the remediation of polychlorinated biphenyls (PCBs) have previously been reviewed. Based on energy consumption, formation of PCDD/F, and remediation efficiency, reductive methods have emerged as being advantageous for remediation of PCBs. However, many new developments in this field have not been systematically reviewed. Therefore, reductive technologies published in the last decade related to remediation of PCBs will be reviewed here. Three categories, including catalytic hydrodechlorination with H2, Fe-based reductive dechlorination, and other reductive dechlorination methods (e.g., hydrogen-transfer dechlorination, base-catalyzed dechlorination, and sodium dispersion) are specifically reviewed. In addition, the advantages of each remediation technology are discussed. In this review, 108 articles are referenced.  相似文献   

14.
Evaluation of TCDD biodegradability under different redox conditions   总被引:2,自引:0,他引:2  
Kao CM  Chen SC  Liu JK  Wu MJ 《Chemosphere》2001,44(6):1447-1454
Polychlorinated dibenzo-p-dioxins have been generated as unwanted by-products in many industrial processes. Although their widespread distribution in different environmental compartments has been recognized, little is known about their fate in the ultimate environment sinks. The highly stable dioxin isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been called the most toxic compound known to man. In this laboratory microcosm study, TCDD bioavailability was evaluated under five reduction/oxidation (redox) conditions including aerobic biodegradation, aerobic cometabolism, methanogenesis, iron reduction, and reductive dechlorination. Activated sludge and aquifer sediments from a TCDD and a pentachlorophenol (PCP) contaminated site were used as the inocula. Acetate, sludge cake, and cane molasses were used as the primary substrates (carbon sources) in cometabolism and reductive dechlorination microcosms. After a 90-day incubation period, microcosms constructed under reductive dechlorination conditions were the only treatment showing promising remediation results. The highest TCDD degradation rate [up to 86% of TCDD removal (with an initial concentration of 96 microg/kg of soil)] was observed in the microcosms with anaerobic activated sludge as the microbial inocula and sludge cakes as the primary substrates. Except for reductive dechlorination microcosms, no significant TCDD removal was observed in the microcosms prepared under other conditions. Thus, application of an effective primary substrate to enhance the reductive dechlorination process is a feasible method for TCDD bioremediation. Bioremediation expense can be significantly reduced by the supplement of some less expensive alternative substrates (e.g., sludge cakes, cane molasses). Results would be useful in designing a scale-up in situ or on-site bioremediation system such as bioslurry reactor for field application.  相似文献   

15.
Estuarine sediments from a USEPA Superfund site in coastal Georgia were extensively contaminated with Aroclor 1268, a mixture of highly chlorinated polychlorinated biphenyls used by a former chlor-alkali plant. Batch slurries of contaminated sediment were incubated for 1 yr with amendments of 2,6-dibromobiphenyl (26-BB) and 2,3,4,5,6-pentachlorobiphenyl (23456-CB) under anaerobic, sulfate-reducing conditions and different pH (5.5-7.5). Organic extracts of slurry sub-samples in a time series were analyzed by congener-specific GC-MS. Dechlorination of 23456-CB was pH dependent and occurred via two routes with the sequential loss of (1) meta and para chlorines and (2) para, ortho, and meta chlorines. Quantitative dehalogenation of 26-BB was observed at all pH. Supplementation of nonachlorobiphenyls (as primers) did not induce dechlorination of native Aroclor 1268 nor of the primers themselves. While contaminated estuarine sediments possess microbial consortia with diverse dehalogenating activities, lack of dechlorination of Aroclor 1268 and spiked nonachlorobiphenyl congeners suggests a bioavailability limitation or enzyme-substrate incompatibilities.  相似文献   

16.
Chen IM  Chang FC  Wang YS 《Chemosphere》2001,45(2):223-229
To understand the dechlorination ability of chlorobenzenes (CBs) and polychlorinated biphenyls (PCBs) by untamed microorganisms under anaerobic condition and to correlate gas chromatographic properties with the occurrence of reductive dechlorination, introduction of CBs and PCBs in the culture medium inoculated with microorganisms from sludge and sediment, respectively, were performed. Three kinds of culture media preparing from sludge, river water and a synthetic medium were used in the experiments. HCB was degraded to 1,3,5-trichlorobenzene (1,3,5-TCB) and 1,3-dichlorobenzene (1,3-DCB) in both sludge medium and synthetic medium with inoculated microorganisms. Three PCB congeners including 2,3,4-, 3,4,5- and 2,3,4,5-CBp (chlorinated biphenyl) were not found to be dechlorinated in the river water medium with inoculation culture but to be dechlorinated in the synthetic medium. MNDO methodology was used to compute theoretical dechlorination reaction heats and GC-ECD techniques were used to estimate chromatographic data of CB and PCB congeners. Both CB and PCB congeners showed that dechlorination by untamed microorganisms under anaerobic mixed cultures were more likely to occur when larger amounts of energy were released and greater deltaln RRT value between the parent congener and the daughter product was observed. Deltaln RRT provided a more precise information on the singularity of PCBs ortho-dechlorination in an aspect of thermodynamic favorable rule.  相似文献   

17.
For sites contaminated with chloroethene non-aqueous-phase liquids, designing a remediation system that couples in situ chemical oxidation (ISCO) with potassium permanganate (KMnO4) and microbial dechlorination may be complicated because of the potentially adverse effects of ISCO on anaerobic bioremediation processes. Therefore, one-dimensional column studies were conducted to understand the effect of permanganate oxidation on tetrachloroethene (PCE) dechlorination by the anaerobic mixed culture KB-1. Following the confirmation of PCE dechlorination, KMnO4 was applied to all columns at a range of concentrations and application velocities to simulate varied distances from oxidant injection. Immediately following oxidation, reductive dechlorination was inhibited; however, after passing several pore volumes of sterile growth medium through the columns after oxidation, a rebound of PCE dechlorination activity was observed in every inoculated column without the need to reinoculate. The volume of medium required for a rebound of dechlorination activity differed from 1.1 to 8.1 pore volumes (at a groundwater velocity of 4 cm/d), depending on the specific condition of oxidant application.  相似文献   

18.
Chloromethane (CH(3)Cl) is the most abundant halocarbon in the atmosphere. Although largely of natural origin it is responsible for around 17% of chlorine-catalysed ozone destruction. Sources identified to date include biomass burning, oceanic emissions, wood-rotting fungi, higher plants and most recently tropical ferns. Current estimates reveal a shortfall of around 2 million ty(-1) in sources versus sinks for the halocarbon. It is possible that emissions from green plants have been substantially underestimated. A potentially valuable tool for validating emission flux estimates is comparison of the delta13C value of atmospheric CH(3)Cl with those of CH(3)Cl from the various sources. Here we report delta13C values for CH(3)Cl released by two species of tropical ferns and show that the isotopic signature of CH(3)Cl from pteridophytes like that of CH(3)Cl from higher plants is quite different from that of CH(3)Cl produced by biomass burning, fungi and industry. delta13C values for CH(3)Cl produced by Cyathea smithii and Angiopteris evecta were respectively -72.7 per thousand and -69.3 per thousand representing depletions relative to plant biomass of 42.3 per thousand and 43.4 per thousand. The characteristic isotopic signature of CH(3)Cl released by green plants should help constrain their contribution to the atmospheric burden when reliable delta13C values for all other major sources of CH(3)Cl are obtained and a globally averaged delta13C value for atmospheric CH(3)Cl is available.  相似文献   

19.
A method is described for near-quantitative extraction of micromolar concentrations of chlorinated aliphatic hydrocarbons (CAHs) from water for determination of chlorine (Cl) isotope ratios. A low pressure, carrier-gas procedure of extraction was proven to be applicable to CH2Cl2, CCl4, C2H2Cl2, and C2HCl3. The pH of the water was adjusted with NaOH to prevent extraction of CO2 from air and/or dissolved inorganic carbonate species. Recoveries of CAH samples (approximately 15 mumol), added to and extracted from approximately 340 ml of water, averaged approximately 96%. Average changes in the delta 37Cl values of the CAHs, attributable to the extraction process, were -0.01 +/- 0.06@1000. Significant isotopic fractionation of Cl was measured during partial extraction of C2CHCl3 from water, indicating that near-quantitative extraction is required for reliable stable Cl isotope analysis of CAHs. This method is also suitable for the extraction of dissolved CAH for gas chromatography-combustion-isotope ratio mass spectrometric measurements of hydrogen and carbon.  相似文献   

20.
Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C2 mass was accounted for. Degradation of the chlorinated ethylenes was found to be first-order in substrate. Dechlorination trials with increasing catalyst concentration showed a linearly increasing pseudo first-order rate constant which yielded rate laws for PCE and TCE degradation that are first-order in catalyst. The dechlorination activity of this catalyst was compared to that of another water-soluble cobalt porphyrin under the same reaction conditions and found to be comparable for PCE and TCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号