首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
OBJECTIVES: The present study examined the influence of age on the morbidity and mortality of pedestrian victims while controlling for confounding factors. METHODS: The Pedestrian Crash Data Study (PCDS) database was used for a cross-sectional study to compare the outcome of senior (age >or=60 years) and adult (age 19 to 50 years) pedestrian victims. The outcome measures were the Injury Severity Score (ISS), Maximum Abbreviated Injury Score (MAIS), Abbreviated Injury Scale (AIS), and Mortality. Logistic regression models were used to estimate age-associated risks while controlling for confounders such as vehicle type, impact speed, and pedestrian height, weight, and gender. RESULTS: Compared to the adult victims, the seniors had a higher average ISS (23 vs. 16, p = 0.018) and higher mortality (30 percent vs. 11 percent, p or=9 (odds ratio = 2.72; 95 percent CI: 1.31-5.68) and to die (odds ratio = 6.68; 95 percent CI: 2.37-19.88). The seniors were approximately twice as likely to have higher AIS scores to almost every body region. CONCLUSIONS: The adjusted age-dependent risks indicated by the current study should be considered when calculating or projecting pedestrian morbidity and mortality. Adjustment in statistical models is essential to achieve precise risk estimates and in turn to appropriately allocate public health rescores.  相似文献   

2.
Abstract

Objectives: With regard to the pediatric population involved in vehicle side impact collisions, epidemiologic data can be used to identify specific injury-producing conditions and offer possible safety technology effectiveness through population-based estimates. The objective of the current study was to perform a field data analysis to investigate injury patterns and sources of injury to 4- to 10-year-olds in side and oblique impacts to determine the potential effect of updated side impact regulations and airbag safety countermeasures.

Methods: The NASS-CDS, years 1991 to 2014, was analyzed in the current study. The Abbreviated Injury Scale (AIS) 2005–Update 2008 was used to determine specific injuries and injury severities. Injury distributions were examined by body region as specified in the AIS dictionary and the Maximum AIS (MAIS). Children ages 4 to 10 were examined in this study. All occupant seating locations were investigated. Seating positions were designated by row and as either near side, middle, or far side. Side impacts with a principal direction of force (PDOF) between 2:00 and 4:00 as well as between 8:00 and 10:00 were included. Restraint use was documented only as restrained or unrestrained and not whether the restraint was being used properly. Injury distribution by MAIS, body region, and source of injury were documented. Analysis regarding occupant injury severity, body region injured, and injury source was performed by vehicle model year to determine the effect of updated side impact testing regulation and safety countermeasures. Because the aim of the study was to identify the most common injury patterns and sources, only unweighted data were analyzed.

Results: Main results obtained from the current study with respect to 4- to 10-year-old child occupants in side impact were that a decrease was observed in frequency of MAIS 1–3 injuries; injuries to the head, face, and extremities; as well as injuries caused by child occupant interaction with the vehicle interior and seatback support structures in 1998 model year passenger cars and newer.

Conclusions: Results from this study could be useful in design advances of pediatric anthropomorphic test devices, child restraints, as well as vehicles and their safety countermeasure systems.  相似文献   

3.
Abstract

Objective: The purpose of this study is to investigate the injury patterns of noncatastrophic accidents by individual age groups.

Methods: Data were collected from the Korean In-Depth Accident Study database based on actual accident investigation. The noncatastrophic criteria were classified according to U.S. experts from the Centers for Disease Control and Prevention’s recommendations for field triage guidelines of high-risk automobile crash criteria by vehicle intrusions more than 12 in. on occupant sites (including the roof) and more than 18 in. on any site. The Abbreviated Injury Scale (AIS) was used to determine injury patterns for each body region. Severely injured patients were classified as Maximum Abbreviated Injury Scale (MAIS) 3 or higher.

Results: In this study, the most significant injury regions were the head and neck, extremities, and thorax. In addition, the incidence of severe injury among elderly patients was nearly 1.6 times higher than that of non-elderly patients. According to age group, injured body regions among the elderly were the thorax, head and neck, and extremities, in that order. For the non-elderly groups, these were head and neck, extremities, and thorax. Severe injury rates were slightly different for the elderly group (head and neck, abdomen) and non-elderly group (thorax, head and neck).

Conclusions: In both age groups, the rate of severe injury is proportional to an increase in crush extent zone. Front airbag deployment may have a relatively significant relationship to severe injuries.  相似文献   

4.
5.
Objective: Survival risk ratios (SRRs) and their probabilistic counterpart, mortality risk ratios (MRRs), have been shown to be at odds with Abbreviated Injury Scale (AIS) severity scores for particular injuries in adults. SRRs have been validated for pediatrics but have not been studied within the context of pediatric age stratifications. We hypothesized that children with similar motor vehicle crash (MVC) injuries may have different mortality risks (MR) based upon developmental stage and that these MRs may not correlate with AIS severity.

Methods: The NASS-CDS 2000–2011 was used to define the top 95% most common AIS 2+ injuries among MVC occupants in 4 age groups: 0–4, 5–9, 10–14, and 15–18 years. Next, the National Trauma Databank 2002–2011 was used to calculate the MR (proportion of those dying with an injury to those sustaining the injury) and the co-injury-adjusted MR (MRMAIS) for each injury within 6 age groups: 0–4, 5–9, 10–14, 15–18, 0–18, and 19+ years. MR differences were evaluated between age groups aggregately, between age groups based upon anatomic injury patterns and between age groups on an individual injury level using nonparametric Wilcoxon tests and chi-square or Fisher's exact tests as appropriate. Correlation between AIS and MR within each age group was also evaluated.

Results: MR and MRMAIS distributions of the most common AIS 2+ injuries were right skewed. Aggregate MR of these most common injuries varied between the age groups, with 5- to 9-year-old and 10- to 14-year-old children having the lowest MRs and 0- to 4-year-old and 15- to 18-year-old children and adults having the highest MRs (all P <.05). Head and thoracic injuries imparted the greatest mortality risk in all age groups with median MRMAIS ranging from 0 to 6% and 0 to 4.5%, respectively. Injuries to particular body regions also varied with respect to MR based upon age. For example, thoracic injuries in adults had significantly higher MRMAIS than such injuries among 5- to 9-year-olds and 10- to 14-year-olds (P =.04; P <.01). Furthermore, though AIS was positively correlated with MR within each age group, less correlation was seen for children than for adults. Large MR variations were seen within each AIS grade, with some lower AIS severity injuries demonstrating greater MRs than higher AIS severity injuries. As an example, MRMAIS in 0- to 18-year-olds was 0.4% for an AIS 3 radius fracture versus 1.4% for an AIS 2 vault fracture.

Conclusions: Trauma severity metrics are important for outcome prediction models and can be used in pediatric triage algorithms and other injury research. Trauma severity may vary for similar injuries based upon developmental stage, and this difference should be reflected in severity metrics. The MR-based data-driven determination of injury severity in pediatric occupants of different age cohorts provides a supplement or an alternative to AIS severity classification for pediatric occupants in MVCs.  相似文献   

6.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


7.
8.
Introduction: This study aimed to assess the physical, psychological, and economic burden shouldered by severely injured two-wheel users in three European countries as well as the cost resulting from their hospitalization. Methods: A total of seven public hospitals were involved in three countries: Greece, Italy, and Germany. Participants enrolled during a 12-month period starting in April 2013. Eligibility criteria included an injury sustained at Road Traffic Crashes (RTC) irrespective of the type of vehicle, hospitalization 1 day in the Intensive Care Unit (ICU) or sub-ICU, and age 18 years or over. Patients were interviewed at 1, 6, and 12 months upon admission. The study used widely recommended classifications for injury severity (Abbreviated Injury Severity [AIS]; Maximum Abbreviated Injury Severity [MAIS]) and standardized measures such as the Disability Assessment Schedule II (WHODAS 2.0), “Impact of Event Scale” (IES-R), Center for Epidemiological Studies Depression Scale (CES-D Scale). Health Care Expenditure was assessed through the Monash University Accident Research Centre (MUARC's) framework, which included measures of ‘Direct’ and ‘Indirect’ costs. Diagnosis-related groups (DRGs) were used to estimate hospitalization costs. Results: A total of 54 two-wheel users enrolled in the study in all the countries and 32 completed all follow-up questionnaires. Physical disability increased over 12 months following the injury. Post Traumatic Stress Disorder (PTSD) symptoms of avoidance remained at high levels over the study period. PTSD symptoms of intrusion improved significantly during the second half of the year under investigation. The total annual cost of injury for the two-wheel users who were hospitalized in the selected ICU of all the partner countries for severe injury in 2013/2014, was estimated at €714,491 made up of €123,457 direct and €591,034 indirect costs. Men, aged 50–64 years and those who sustained slight injuries primarily at the lower extremities presented higher indirect costs per person. A total of €1032.092 was spent on hospitalization payments. Women, aged 65 + and those who sustained severe injuries at the central body region presented higher direct costs per person. Women, aged 50–64 years, those with severe injuries and a major injury at the central body and the upper body region presented the highest hospitalization costs per person. Conclusions: There is a need for effective strategies to early detect and treat groups at risk of being confronted with prolonged psychosocial and economic consequences. Practical implications: A holistic understanding of the impact of injury on individuals is important in order to achieve effective treatment of psychological co-morbidities in a timely manner.  相似文献   

9.
Objective: Traffic crashes have high mortality and morbidity for young children. Though many specialized child restraint systems improve injury outcomes, no large-scale studies have investigated the cross-chest clip's role during a crash, despite concerns in some jurisdictions about the potential for neck contact injuries from the clips. This study aimed to investigate the relationship between cross-chest clip use and injury outcomes in children between 0 and 4 years of age.

Methods: Child passengers between 0 and 4 years of age were selected from the NASS-CDS data sets (2003–2014). Multiple regression analysis was used to model injury outcomes while controlling for age, crash severity, crash direction, and restraint type. The primary outcomes were overall Abbreviated Injury Score (AIS) 2+ injury, and the presence of any neck injury.

Results: Across all children aged 0–4 years, correct chest clip use was associated with decreased Abbreviated Injury Scale (AIS) 2+ injury (odds ratio [OR] = 0.44, 95% confidence interval [CI], 0.21–0.91) and was not associated with neck injury. However, outcomes varied by age. In children <12 months old, chest clip use was associated with decreased AIS 2+ injury (OR = 0.09, 95% CI, 0.02–0.44). Neck injury (n = 7, all AIS 1) for this age group only occurred with correct cross-chest clip use. For 1- to 4-year-old children, cross-chest clip use had no association with AIS 2+ injury, and correct use significantly decreased the odds of neck injury (OR = 0.49; 95% CI, 0.27–0.87) compared to an incorrectly used or absent cross-chest clip. No serious injuries were directly caused by the chest clips.

Conclusions: Correct cross-chest clip use appeared to reduce injury in crashes, and there was no evidence of serious clip-induced injury in children in 5-point harness restraints.  相似文献   


10.
11.
Objective: As vehicle safety technologies and evaluation procedures advance, it is pertinent to periodically evaluate injury trends to identify continuing and emerging priorities for intervention. This study examined detailed injury distributions and injury risk trends in belted occupants in frontal automobile collisions (10 o’clock to 2 o’clock) using NASS-CDS (1998–2015).

Methods: Injury distributions were examined by occupant age and vehicle model year (stratified at pre- and post-2009). Logistic regression models were developed to examine the effects of various factors on injury risk (by body region), controlling for delta-V, sex, age, height, body mass index (BMI), vehicle model year (again stratified at 2009).

Results: Among other observations, these analyses indicate that newer model year vehicles (model year [MY] 2009 and later) carry less risk of Abbreviated Injury Scale (AIS) 2+ and AIS 3+ injury compared to older model year vehicles, with odds ratios of 0.69 (AIS 2+) and 0.45 (AIS 3+). The largest reductions in risk between newer model year vehicles and older model year vehicles occur in the lower extremities and in the risk of skull fracture. There is no statistically significant change in risk of AIS 3+ rib fracture or sternum injury between model year categories. Females are at greater risk of AIS 2+ and AIS 3+ injury compared to males, with increased risk across most injury types.

Conclusions: For belted occupants in frontal collisions, substantial reductions in injury risk have been realized in many body regions in recent years. Risk reduction in the thorax has lagged other body regions, resulting in increasing prevalence among skeletal injuries in newer model year vehicles (especially in the elderly). Injuries also remain common in the arm and hand/wrist for all age ranges studied. These results provide insight into where advances in the field have made gains in occupant protection and what injury types remain to be addressed.  相似文献   


12.
OBJECTIVE: Motor vehicle collision (MVC)-related spinal injury is a severe and often permanently disabling injury. In addition, strain injuries have been reported as a common outcome of MVCs. Although advances in automobile crashworthiness have reduced both fatalities and severe injuries, the impact of varying occupant restraint systems (seatbelts and airbags) on thoracolumbar spine injuries is unknown. This study examined the relationship between the occurrence of mild to severe cervical and thoracolumbar spine injury and occupant restraint systems among front seat occupants involved in frontal MVCs. METHODS: A retrospective cohort study was conducted among subjects obtained from the 1995-2004 National Automotive Sampling System. Cases were identified based on having sustained a spine injury of >/=1 on the Abbreviated Injury Scale (AIS), 1990 Revision. Risk risks (RRs) and 95% confidence intervals (CIs) were computed comparing occupant restraint systems with unrestrained occupants. RESULTS: We found an overall incidence of AIS1 cervical (11.8%) and thoracolumbar (3.7%) spinal injury. Seatbelt only restraints were associated with increased cervical AIS1 injury (RR = 1.40, 95% CI 1.04-1.88). However, seatbelt only restraints showed the greatest risk reduction for AIS2 spinal injuries. Airbag only restraints reduced thoracolumbar AIS1 injuries (RR = 0.29, 95% CI 0.08-1.04). Seatbelt combined with airbag use was protective for cervical AIS3+ injury overall (RR = 0.29, 95% CI 0.14-0.58), cervical neurological injury (RR = 0.19, 95% CI 0.05-0.81), and thoracolumbar AIS3+ injury overall (RR = 0.20, 95% CI 0.05-0.70). CONCLUSIONS: The results of this study suggest that seatbelts alone or in combination with an airbag increased the incidence of AIS1 spinal injuries, but provide protection against more severe injury to all regions of the spine. Airbag deployment without seatbelt use did not show increased protection relative to unrestrained occupants.  相似文献   

13.
Abstract

Objective: The objective of this research study is to estimate the benefit to pedestrians if all U.S. cars, light trucks, and vans were equipped with an automated braking system that had pedestrian detection capabilities.

Methods: A theoretical automatic emergency braking (AEB) model was applied to real-world vehicle–pedestrian collisions from the Pedestrian Crash Data Study (PCDS). A series of potential AEB systems were modeled across the spectrum of expected system designs. Both road surface conditions and pedestrian visibility were accounted for in the model. The impact speeds of a vehicle without AEB were compared to the estimated impact speeds of vehicles with a modeled pedestrian detecting AEB system. These impacts speeds were used in conjunction with an injury and fatality model to determine risk of Maximum Abbreviated Injury Scale of 3 or higher (MAIS 3+) injury and fatality.

Results: AEB systems with pedestrian detection capability, across the spectrum of expected design parameters, reduced fatality risk when compared to human drivers. The most beneficial system (time-to-collision [TTC]?=?1.5?s, latency = 0?s) decreased fatality risk in the target population between 84 and 87% and injury risk (MAIS score 3+) between 83 and 87%.

Conclusions: Though not all crashes could be avoided, AEB significantly mitigated risk to pedestrians. The longer the TTC of braking and the shorter the latency value, the higher benefits showed by the AEB system. All AEB models used in this study were estimated to reduce fatalities and injuries and were more effective when combined with driver braking.  相似文献   

14.
Abstract

Objective: Focusing on children (0–17?years), this study aimed to investigate injury and accident characteristics for bicyclists and to evaluate the use and protective effect of bicycle helmets.

Method: This nationwide Swedish study included children who had visited an emergency care center due to injuries from a bicycle crash. In order to investigate the causes of bicycle crashes, data from 2014 to 2016 were analyzed thoroughly (n?=?7967). The causes of the crashes were analyzed and categorized, focusing on 3 subgroups: children 0–6, 7–12, and 13–17?years of age. To assess helmet effectiveness, the induced exposure approach was applied using data from 2006 to 2016 (n?=?24,623). In order to control for crash severity, only bicyclists who had sustained at least one Abbreviated Injury Scale (AIS) 2+ injury (moderate injury or more severe) in body regions other than the head were included.

Results: In 82% of the cases the children were injured in a single-bicycle crash, and the proportion decreased with age (0–6: 91%, 7–12: 84%, 13–17: 77%). Of AIS 2+ injuries, 8% were head injuries and 85% were injuries to the extremities (73% upper extremities and 13% lower extremities). Helmet use was relatively high up to the age of 10 (90%), after which it dropped. Helmets were much less frequently used by teenagers (14%), especially girls. Consistently, the share of head injuries increased as the children got older. Bicycle helmets were found to reduce all head injuries by 61% (95% confidence interval [CI], 10: +/? 10%) and AIS 2+ head injuries by 68% (95% CI, 12: +/? 12%). The effectiveness in reducing face injuries was lower (45% CI +/? 10% for all injuries and 54% CI +/? 32% for AIS2+ injuries).

Conclusions: This study indicated that bicycle helmets effectively reduce injuries to the head and face. The results thus point to the need for actions aimed at increasing helmet use, especially among teenagers. Protective measures are necessary to further reduce injuries, especially to the upper extremities.  相似文献   

15.
Posted speed limit and police-reported injury codes are commonly used by researchers to approximate vehicle impact and occupant injury severity. In-depth crash investigations, however, produce more precise measures of crash and injury severity: change in velocity (delta-V) for crash severity and Abbreviated Injury Scale (AIS) scores for injury severity. A comparison of data from police crash reports with that gathered by National Automotive Sampling System (NASS) investigators highlighted the inadequacy of speed limit and police injury codes as proxies for delta-V and AIS injury severity. In general, delta-V increased with speed limit and higher values of AIS were associated with higher police-coded injury severity, but there were a number of anomalies. In particular, 49% of the drivers coded by police as having incapacitating injuries actually had sustained no more than minor injuries. This overstatement of injury severity was less frequent among male (44%) and elderly (37%) drivers than among female (53%) and nonelderly (50%) drivers. Also, 79% of the investigated vehicles that crashed on roads posted at 60 mph (96 km/h) or higher experienced a delta-V less than 25 mph (40 km/h). Safety studies depending on data from only police reports to establish injury or crash severity therefore could produce erroneous results.  相似文献   

16.
Objective: The objective of this study was to quantify the population-based effects of a lower shoulder belt load limit on front row occupants in frontal car crashes.

Method: Crashes of modern vehicles from the GIDAS (German In-Depth Accident Study) are corrected for bias and projected to the national level. Injury risk functions are computed for the injury severity levels Maximum Abbreviated Injury Scale (MAIS) 2+, MAIS 3+, and fatal, stratified by 2 age cohorts (16–44 years of age and 45 years or older). To assess the field effectivity of a “softer belt,” the projected crash frequency data are modified separately for the 2 age cohorts such that its risk structure represents the risk of a softer belt. Given those 2 samples, the field effectivity of a softer belt is derived for several shares of the younger age cohort according to the injury severity levels MAIS 2+, MAIS 3+, and fatal.

Results: The injury risk distribution of the projected crash frequency data, represented here by the injury risk functions obtained, fits well into the injury risk distribution of other data sets (Sweden, United States, and Japan) given in the literature. The relative effects of a lower belt force are stable over the different ratios of the younger and old age cohorts. At the MAIS 2+ level, a lower belt force can significantly reduce the number of injuries (about 10%). A lower belt force does not significantly affect the number of MAIS 3+ injuries. A lower belt force can, however, more than double the number of fatal injuries.

Conclusions: Because the number of fatal injuries rises dramatically due to lower belt force, the reduction in the number of MAIS 2+ injuries comes at a very high cost. Therefore, whether reducing the belt force limit is the right approach is questionable.  相似文献   


17.
The objectives of this study were to determine whether routine state-wide hospitalization data can be used for population level surveillance of the incidence of spinal cord injury (SCI) from motor vehicle traffic crashes (MVTCs) and to verify the coverage of the Australian Spinal Cord Injury Register. A method was developed to identify new injury incidents from routine South Australian hospitalization data. Mapping software was then used to derive the Abbreviated Injury Scale (AIS) and Injury Impairment Scale (IIS) codes for each incident case of spinal injury using the principal diagnosis code on the hospital data file. IIS code values in the range from 3 to 6 were considered to be comparable with the SCI coding criteria utilized by the Australian Spinal Cord Injury Register (ASCIR) which were based on the criteria of the American Spinal Injury Association. The number of estimated new incident cases of SCI based on the IIS coding of hospitalization data was compared with the actual number reported from the ASCIR. The case numbers were highly comparable overall and also by time and age group suggesting that the coverage of the ASCIR was very high. The results of the study support use of the IIS for estimating incident case numbers of MVTC-related SCI from routine state-wide hospitalization data. If routine hospital separations data elsewhere were suitable for the purpose and the IIS also proves to be applicable to non-MVTC-related SCI, the incidence of SCI could be monitored in state and national populations using the IIS and this could provide an alternative data source where registers of SCI do not exist. In addition, the IIS provides a means to assess coverage where registers do exist.  相似文献   

18.
Abstract

Objective: The objective of this research study was to estimate the number of left turn across path/opposite direction (LTAP/OD) crashes and injuries that could be prevented in the United States if vehicles were equipped with an intersection advanced driver assistance system (I-ADAS).

Methods: This study reconstructed 501 vehicle-to-vehicle LTAP/OD crashes in the United States that were investigated in the NHTSA National Motor Vehicle Crash Causation Survey (NMVCCS). The performance of 30 different I-ADAS system variations was evaluated for each crash. These variations were the combinations of 5 time-to-collision (TTC) activation thresholds, 3 latency times, and 2 different response types (automated braking and driver warning). In addition, 2 sightline assumptions were modeled for each crash: One where the turning vehicle was visible long before the intersection and one where the turning vehicle was only visible within the intersection. For resimulated crashes that were not avoided by I-ADAS, a new crash delta-V was computed for each vehicle. The probability of Abbreviated Injury Scale 2 or higher injury in any body region (Maximum Abbreviated Injury Scale [MAIS] 2+F) to each front-row occupant was computed.

Results: Depending on the system design, sightline assumption, I-ADAS variation, and fleet penetration, an I-ADAS system that automatically applies emergency braking could avoid 18–84% of all LTAP/OD crashes. Only 0–32% of all LTAP/OD crashes could have been avoided using an I-ADAS system that only warns the driver. An I-ADAS system that applies emergency braking could prevent 47–93% of front-row occupants from receiving MAIS 2?+?F injuries. A system that warns the driver in LTAP/OD crashes was able to prevent 0–37% of front-row occupants from receiving MAIS 2?+?F injuries. The effectiveness of I-ADAS in reducing crashes and number of injured persons was higher when both vehicles were equipped with I-ADAS.

Conclusions: This study presents the simulated effectiveness of a hypothetical intersection active safety system on real crashes that occurred in the United States. This work shows that there is a strong potential to reduce crashes and injuries in the United States.  相似文献   

19.
20.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号