首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文对采用电化学方法去除SO2/NOx废气这一新的研究方法进行了综述.在用酞花青钴(CoPc)修饰的碳气体扩散电极上,SO2在空气中的体积百分数在20%以下时可以完全被氧化为硫酸,以连二硫酸盐(S2O2-4)作还原剂,Fe2+-EDTA作络合剂时,NO以90%以上的程度还原为NH+4与NH2(SO3H)等低价含氮化合物,产物中未见N2、N2O与NO2等气体,氧化产物SO2-3(或HSO-3)在Pb阴极上还原再生为S2O2-4.用Ce4+作氧化剂可将SO2/NO2氧化为相应的酸,还原产物Ce3+经电解氧化后循环使用.  相似文献   

2.
During the cation exchange membrane (CEM) enhanced electrokinetic (EK) soil remediation, the nearer to the anode, the higher are the H+ concentrations and the redox potentials. As both low pH and high redox potential are helpful to speed-up Cd electro-migration, soils near the anode can be quickly remedied. Usually EK process is operated with one fixed anode (FA). A novel CEM enhanced EK method with approaching anodes (AAs) is proposed to accelerate electro-migration effect. Several mesh Ti/Ru anodes were inserted as AAs in the treated soil. They were switched in turn from the anode towards the cathode. Thus high H+ ions concentrations and high redox potentials quickly migrate to the cathode. Consequently, soil remediation is accelerated and nearly 44% of energy and 40% of time can be saved. The mechanism of Cd electro-migration behavior in soils during CEM enhanced EK is described as the elution in an electrokinetically driven chromatogram.  相似文献   

3.
Electrochemical advanced oxidation processes (EAOPs) are environmentally friendly methods based on the destruction of organic pollutants in wastewaters with in situ electrogenerated hydroxyl radical. This species is formed in anodic oxidation (AO) from water oxidation at the anode and in indirect electro-oxidation methods like electro-Fenton (EF) and photoelectro-Fenton (PEF) also from reaction between catalytic Fe2+ and H2O2 continuously produced at the O2-diffusion cathode. The PEF method involves the irradiation of the treated solution with UVA light to enhance the photolysis of organics including Fe(III) complexes. In this work, the oxidation power of such EAOPs to decontaminate synthetic wastewaters of the biocide chloroxylenol (4-chloro-3,5-dimethylphenol) at pH 3.0 is comparatively examined with an undivided electrolytic cell containing a Pt or boron-doped diamond (BDD) anode and a stainless steel or O2-diffusion cathode. The initial chlorine is released as Cl(-) ion, which remains stable in the medium using Pt or is oxidized to Cl2 on BDD. The biocide solutions can be completely decontaminated using AO with a BDD anode, as well as PEF with a Pt or BDD anode. The PEF procedure with a BDD anode is the most powerful method leading to total mineralization in about 300 min, practically independent of current density. When current density rises, the degradation rate of processes increases, but they become less efficient due to the larger enhancement of waste reactions of oxidants. Chloroxylenol is much more rapidly removed in EF and PEF than in AO. 2,6-dimethylhydroquinone, 2,6-dimethyl-p-benzoquinone and 3,5-dimethyl-2-hydroxy-p-benzoquinone are identified as aromatic by-products, and maleic, malonic, pyruvic, acetic and oxalic acids are found as generated carboxylic acids. A general pathway for chloroxylenol mineralization by all EAOPs including the above by-products is proposed.  相似文献   

4.
In the Ag(II)/Ag(I) based mediated electrochemical oxidation (MEO) process, the spent waste from the electrochemical cell, which is integrated with the scrubber columns, contains high concentrations of precious silver as dissolved ions in both the anolyte and the catholyte. This work presents an electrochemical developmental study for the recovery of silver from simulated waste water from Ag(II)/Ag(I) based MEO process. Galvanostatic method of silver deposition on Ti cathode in an undivided cell was used, and the silver recovery rate kinetics of silver deposition was followed. Various experimental parameters, which have a direct bearing on the metal recovery efficiency, were optimized. These included studies with the nitric acid concentration (0.75-6M), the solution stirring rate (0-1400 rpm), the inter-electrode distance between the anode and the cathode (2-8 cm), the applied current density (29.4-88.2 mA cm(-2)), and the initial Ag(I) ion concentration (0.01-0.2M). The silver recovered by the present electrodeposition method was re-dissolved in 6M nitric acid and subjected to electrooxidation of Ag(I) to Ag(II) to ascertain its activity towards Ag(II) electrogeneration from Ag(I), which is a key factor for the efficient working of MEO process. Our studies showed that the silver metal recovered by the present electrochemical deposition method could be reused repeatedly for MEO process with no loss in its electrochemical activity. Some work on silver deposition from sulfuric acid solution of different concentrations was also done because of its promising features as the catholyte in the Ag(II) generating electrochemical cell used in MEO process, which include: (i) complete elimination of poisonous NO(x) gas liberation in the cathode compartment, (ii) reduced Ag(+) ion migration across Nafion membrane from anolyte to catholyte thereby diminished catholyte contamination, and (iii) lower cell voltage and hence lesser power consumption.  相似文献   

5.
This paper reports the degradation of 2,4-DP (2-(2,4-dichlorophenoxy)-propionic acid) solutions of pH 3.0 by environmentally friendly electrochemical methods such as anodic oxidation, electro-Fenton and photoelectro-Fenton with a Pt or boron-doped diamond (BDD) anode. In the two latter techniques an O(2)-diffusion cathode was used and 1.0mM Fe(2+) was added to the solution to give hydroxyl radical (*OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the cathode. All treatments with BDD are viable to decontaminate acidic wastewaters containing 2,4-DP since they give complete mineralization, with loss of chloride ion, at high current due to the great production of oxidant *OH at the BDD surface favoring the destruction of final carboxylic acids. *OH formed from Fenton's reaction destroys more rapidly aromatic products, making the electro-Fenton and photoelectro-Fenton processes much more efficient than anodic oxidation. UVA light in photoelectro-Fenton with BDD has little effect on the degradation rate of pollutants. The comparative procedures with Pt lead to slower decontamination because of the lower oxidizing power of this anode. The effect of current on the degradation rate and efficiency of all methods is studied. The 2,4-DP decay always follows a pseudo-first-order kinetics. Chlorohydroquinone, chloro-p-benzoquinone and maleic, fumaric, malic, lactic, pyruvic, acetic, formic and oxalic acids are detected as products by chromatographic techniques. A general sequence accounting for by the reaction of all these intermediates with the different oxidizing agents is proposed.  相似文献   

6.
采用电化学法消毒处理医院污水,通过选用不同阳极材料构建的电化学体系,探讨电化学法的消毒机理.试验表明,以涂有贵金属(钌、铂和铱)氧化物的钛板作阳极,不锈钢板作阴极,在电流密度为8 mA/cm2、水力停留时间为15 min、空气流量为40L/h、极水比为1.0的试验条件下,消毒后污水中总大肠菌群数<500 cfu/L,达到国家一级排放标准(GB8978-1996).  相似文献   

7.
Yap CY  Mohamed N 《Chemosphere》2007,67(8):1502-1510
Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.  相似文献   

8.
Jeong J  Kim JY  Cho M  Choi W  Yoon J 《Chemosphere》2007,67(4):652-659
Recently, the electrochemical disinfection has gained a great interest as one of the alternatives to conventional chlorination due to its high effectiveness and environmental compatibility. Despite the extensive reports on electro-chlorination disinfection, few researches were reported on the systems without generating chlorine. This study mainly focused on the potential disinfecting ability of electro-generated oxidants other than chlorine with using an inert medium (chloride-free phosphate buffer solution), which was intended to exclude the formation of chlorine during the electrolysis, as the Escherichia coli as an indicator bacterium was disinfected by applying the current to a platinum anode. The electrochemical inactivation of E. coli without chlorine production was demonstrated to occur in two distinct stages. The first stage inactivation takes place rapidly at the beginning of electrolysis, which appears to be achieved by the electrosorption of negatively charged E. coli cells to the anode surface, followed by a direct electron transfer reaction. As the electrolysis continues further, the inactivation becomes slower but steady, in contrast to the first stage of inactivation. This was attributed to the action of reactive oxidants generated from water discharge, such as hydroxyl radical. Overall, this study suggests that the electrochemical disinfection could be successfully performed even without producing chlorine, recommending the potential application for disinfecting water that does not allow including any chloride ions (such as the production of ultra-pure sterilized water for semiconductor washing).  相似文献   

9.
Brillas E  Casado J 《Chemosphere》2002,47(3):241-248
The degradation of 10-30 l of a 1000 ppm aniline solution in 0.050 M Na2SO4 + H2SO4 at pH 3.0 and 40 degrees C by Electro-Fenton and peroxi-coagulation processes at constant current until 20 A has been studied using a pilot flow reactor in recirculation mode with a filter-press cell containing an anode and an oxygen diffusion cathode, both of 100 cm2 area. H2O2 is produced by the two-electron reduction of O2 at the cathode, being accumulated with a current efficiency between 60% and 80% at the first stages of electrolyses performed with a Ti/Pt anode. In the presence of 1 mM Fe2+, less H2O2 is accumulated, but it is not detected using an Fe anode. The Electro-Fenton process with 1 mM Fe2+ and a Ti/Pt or DSA anode yields an insoluble violet polymer, while the soluble total organic carbon (TOC) is gradually removed, reaching 61% degradation after 2 h at 20 A. In this treatment, pollutants are preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe2+ with H2O2. The peroxi-coagulation process with an Fe anode has higher degradation power, allowing to remove more than 95% of pollutants at 20 A, since some intermediates coagulate with the Fe(OH)3 precipitate formed. Both advanced electrochemical oxidation processes (AEOPs) show moderate energy costs, which increase with increasing electrolysis time and applied current.  相似文献   

10.
Dimensionally stable anodes (DSAs) demonstrate potential for the electrochemical treatment of industrial waste streams and disinfection of effluent. Oxidation by laboratory-prepared tin oxide DSAs was compared with that of commercially available ruthenium oxide, iridium oxide, and mixed metal oxide DSAs, using hexanol as a probe molecule. The performance of the four anodes was similar in two-chamber reactors, in which the anode cell was separated from the cathode cell by a Nafion membrane, which allows transmission of current between the chambers, but not passage of chemical constituents. The anodes were then evaluated in single-cell reactors, which are more representative of potential treatment and disinfection applications. However, in the single-cell reactors, the tin oxide anodes were significantly more effective at oxidation and generated higher quality cyclic voltammograms than the other DSAs. These results suggest that tin oxide anodes have greater potential than the three commercially available DSAs tested for industrial waste stream treatment and effluent disinfection.  相似文献   

11.
Detoxification of tannery waste liquors with an electrolysis system   总被引:7,自引:0,他引:7  
This paper describes an electrochemical treatment and detoxification of tannery waste liquors (TWL). In this technique, TWL was passed through an electrolytic cell using a Ti/Pt anode and a stainless steel 304 cathode. Owing to the strong oxidizing potential of the chemicals produced (chlorine, oxygen, hydroxyl radicals and other oxidants) the organic and inorganic pollutants (ammonia, sulfides and chromium) were wet oxidized to carbon dioxide, nitrogen oxides and sulfur dioxide. In addition, chromium was precipitated as Cr(2)(SO(4))(3). Experiments were run in a batch, laboratory-scale, pilot-plant, and the results are reported herein. After 30 min and 3 h of electrolysis at 0.26 A cm(-2), 45 degrees C and pH 9, total chemical oxygen demand (COD) was reduced by 52 and 83% and biochemical oxygen demand (BOD(5)) was reduced by 35 and 66%, respectively. Additionally, total suspended solids (TSS) were reduced by 8.6 and 26%, total phenolic compounds were reduced by 95.6 and 99.4%. Ammonia, sulfides and soluble chromium were reduced by 100% in both cases, while the mean anode efficiency was 81 g h(-1) A(-1) m(-2) and 1.9 g h(-1) A(-1) m(-2). Also, the mean energy consumption was 4.8 kwh kg(-1) of COD reduced and 200 kwh kg(-1) of COD reduced for 0.5 and 3 h, respectively. These results strongly indicate that this electrolytic method of total oxidation of TWL cannot be cost effective for wide use. However, it can be used as an effective pretreatment stage for detoxification of the wastewater, owing to great efficiency especially with respect to COD and toxicity (phenolics) reduction.  相似文献   

12.
以钛基氧化物涂层材料(Ti/SnO2-Sb2O5-IrO2)为阳极,碳纳米管修饰的石墨(GE—CNT)为阴极构建电化学系统进行硝酸根(NO3-)去除研究,考察了阴极材料、阴极电位和pH值对电化学法去除水中NO[的影响,同时检测了铵离子(NH4+)和亚硝酸根(NO2-)的生成量。结果表明,利用碳纳米管修饰的石墨阴极可获得较好的硝态氮去除效果;随着阴极电位负移,NO3-去除率随之升高;酸性条件下NO3-去除率最高,NH;生成量也更多。对于由NO3-转化产生的NH4+,在氯离子存在条件下再次进行电化学处理120min,其去除率可达97.1%。  相似文献   

13.
以自制的二氧化铅粉末多孔电极为阳极,不锈钢为阴极,探讨了投加Cl-对氨氮电化学氧化反应速率、途径及产物等的影响。结果表明,投加Cl-能显著提高氨氮的电化学氧化速率;有氯离子存在的条件下,氨氮的去除主要靠电催化过程中产生的强氧化性物质.OH,HClO的作用,其去除率随着电流密度的增大呈增高的趋势,随初始pH的增大而增大;投加氯离子后,NO3--N的生成量增加,但氧化产物主要是以N2为主的含氮气体。  相似文献   

14.
An innovative process that combines soil electrokinetic remediation and liquid electrochemical oxidation for the degradation of organic compounds present in a polluted soil was developed and evaluated by using benzo[a]pyrene spiked kaolin. In order to increase benzo[a]pyrene solubility during electrokinetic treatment, the addition of a co-solvent or surfactant, such as ethanol or Brij 35, as flushing solution was tested. The research carried out demonstrated the influence of the desorption agent employed on benzo[a]pyrene remediation from the kaolin matrix. Thus, if the flushing solution was ethanol at 40%, there was no presence of contaminant in either chamber. On the contrary, when a solution of surfactant Brij 35 was used, benzo[a]pyrene was transported towards the cathode chamber, where it was collected. Moreover, the extent of this recovery depends on the pH profile on the soil. When no pH control was used, around 17% of initial contaminant was detected in the cathode chamber; however, when pH control was applied, the recovery of benzo[a]pyrene could be higher than 76%, when the pH control in the anode chamber was set at 7.0.In order to obtain the total degradation of mobilised benzo[a]pyrene from the contaminated soil, the liquid collected by electrokinetic remediation was oxidised by electrochemical treatment. This oxidation was accomplished via an electrochemical cell with a working volume of 0.4 L, and graphite as electrode material. The benzo[a]pyrene was almost totally degraded in 1 d, reaching a degradation of about 73% in 16 h.  相似文献   

15.
Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.  相似文献   

16.
The electrochemical transformation of the organophosphorous insecticide chlorpyrifos (CPF) was investigated in wastewater. The oxidation of CPF was carried out in a single-compartment electrochemical flow cell working under batch operation mode, using diamond-based material as anode and stainless steel as cathode. In order to evaluate its persistence and degradation pathway, two different concentration levels (1.0 mg L−1 and 0.1 mg L−1) were studied. Liquid chromatography/mass spectrometry was used for evaluation of the initial and electrolyzed solutions. The identification of CPF transformation products was performed by liquid chromatography-time of flight-mass spectrometry (LC-TOFMS). Results showed that CPF is completely removed at the end of treatment time. Analysis by LC-TOFMS allowed the identification of six degradation products (with Mw 154, 170, 197, 305 321 and 333). Three of the identified intermediates (Mw 170, 305 and 321) were completely removed at the end of electrolysis time. Interestingly, the formation of diethyl 3,5,6-trichloropyridin-2yl phosphate (chlorpyrifos oxon) and 3,5,6-trichloropyridin-2-ol was also found in previous reported degradation pathways using different degradation technologies.  相似文献   

17.
Wang A  Qu J  Liu H  Ge J 《Chemosphere》2004,55(9):1189-1196
A new wastewater treatment technology--electrokinetic-electrooxidation process (EK-EO process) is developed in this paper. The EK-EO process can take advantage of both electrooxidation on the anode surface and the electrokinetic process of anionic impurities under an electric field, which can enhance the TOC removal in electrolysis process. The degradation of an anionic azo dye Acid Red 14 (AR14) was experimentally investigated. It was found that under an electric field AR14 could be migrated into anode compartment and be efficiently mineralized. After 360 min electrolysis of 100 mgl(-1) AR14 solutions at 4.5 mAcm(-2), complete discoloration was observed in both cathode and anode compartment. About 60% TOC was electromigrated from cathode compartment to anode compartment, and more than 25 mgl(-1) TOC was abated in anode compartment. A possible degradation mechanism of AR14 by EK-EO process was proposed. Additionally, the effect of current density, recycling flux, and electrolyte concentration on the EK-EO degradation of AR14 was also investigated.  相似文献   

18.
活性黑KN-B染料模拟废水电化学脱色   总被引:7,自引:2,他引:5  
杨蕴哲 《环境工程学报》2009,3(9):1607-1610
为进一步明确活性染料在可溶性阳极电化学体系中的脱色机理,以铝为牺牲阳极,不锈钢为阴极,在恒电流操作模式下,针对活性黑KN-B模拟废水,考察了电流密度、初始pH值、电解质种类及浓度、温度、染料浓度因素对染料脱色过程的影响。结果表明:(1)电流密度、电解液初始pH值、氯化钠电解质浓度、温度、染料浓度对染料溶液脱色效率影响显著,在一定实验条件下,染料溶液脱色率可达到88%;(2) 在不同pH的范围内,活性黑KN-B表现的脱色机理不同,pH 4~9为混凝与阴极还原脱色共同作用;pH<4和>9则表现为阴极还原脱色为主; (3) 氯化钠的加入在增强染料脱色的同时,也有助于芳环类物质的后续混凝去除。  相似文献   

19.
同时以活性炭纤维(ACF)为阳极和阴极,在隔膜电解槽中研究了不同电流密度下蒽醌染料活性艳蓝KN-R的电化学脱色.考察了ACF阳极和ACF阴极各自对染料的脱色性能.结果表明,当电流密度为1.0~1.5 mA/cm2时,电解槽中发生阳极电氧化和阴极电还原同时进行的成对电解脱色.在ACF电极上,活性艳蓝KN-R的电氧化脱色比电还原脱色容易进行,1.0 mA/cm2时,阴阳两极室脱色率分别为69%和93%,而1.5 mA/cm2时,阳极室脱色率保持在93%,阴极室脱色率达到79%.  相似文献   

20.
Duo W  Leclerc D 《Chemosphere》2007,67(9):S164-S176
Both organic chlorine (e.g. PVC) and inorganic chlorides (e.g. NaCl) can be significant chlorine sources for dioxin and furan (PCDD/F) formation in combustion processes. This paper presents a thermodynamic analysis of high temperature salt chemistry. Its influence on PCDD/F formation in power boilers burning salt-laden wood waste is examined through the relationships between Cl2, HCl, NaCl(g) and NaCl(c). These analyses show that while HCl is a product of combustion of PVC-laden municipal solid waste, NaCl can be converted to HCl in hog fuel boilers by reactions with SO2 or alumino-silicate materials. Cl2 is a strong chlorinating agent for PCDD/F formation. HCl can be oxidized to Cl2 by O2, and Cl2 can be reduced back to HCl by SO2. The presence of sulphur at low concentrations thus enhances PCDD/F formation by increasing HCl concentrations. At high concentrations, sulphur inhibits de novo formation of PCDD/Fs through Cl2 reduction by excess SO2. The effect of NH3, CO and NOx on PCDD/F formation is also discussed. A semi-empirical kinetic model is proposed. This model considers both precursor and de novo formation mechanisms. A simplified version is used as a stack emission model. The kinetic model indicates that stack dioxin emissions will increase linearly with decreasing electrostatic precipitator (ESP) efficiency and exponentially with increasing ESP temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号