首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
为探究金佛山不同高程的表层岩溶泉入春时期溶解有机质的来源和转化特点,于2017年1、2和4月分别在水房泉(2045 m)和碧潭泉(730 m)进行采样,利用气相色谱-质谱联用仪(GC-MS)对样品中脂类生物标志物(溶解态正构烷烃、脂肪酸)的组分进行定量分析.结果表明,水房泉和碧潭泉溶解态正构烷烃(T-ALK)含量变化范围分别为1546~19314 ng·L~(-1)和1089~12234 ng·L~(-1),平均含量分别为8036、5553ng·L~(-1);脂肪酸变化范围分别为4163~13048 ng·L~(-1)和5519~10079 ng·L~(-1),平均含量分别为8039和8421 ng·L~(-1).由于春季气温回升和降水增多,正构烷烃和脂肪酸含量总体均处于上升趋势.同时,基于正构烷烃分子参数CPI、OEP、TAR、L/H发现,溶解态正构烷烃以细菌源为主,高等植物源输入逐月升高,以低海拔处的碧潭泉变化更为显著.溶解态脂肪酸1、2月以细菌源为主,4月以真菌源和高等植物源脂肪酸为主,细菌源比重依然较高,且因不同海拔的生境不同导致碧潭泉的水生生物输入较水房泉更稳定.  相似文献   

2.
利用气相色谱-质谱联用仪(GC-MS)测定了青木关地下河中溶解态类脂物的含量.研究了其在地下河中的来源、组成及迁移特征.结果表明,7~11月,各溶解态类脂物的平均含量随着青木关地下河运移距离的增加呈降低趋势,其中以溶解态饱和直链脂肪酸的下降最为显著,即由最初的5 704 ng·L~(-1)下降到1 043 ng·L~(-1),减少了约81.71%.正构烷烃能够较为详尽地指征地下河中溶解性有机质来源,而饱和直链脂肪酸、脂肪醇则对藻类和细菌等微生物有较好的指示意义.随着地下河运移距离增加,有机质输入类型呈现多样化,可能与岩溶地表不均一性有关.正构烷烃三端元图解中,水生植物的输入为地下河中溶解性有机质的主要来源,其次分别为陆地高等植物和藻类、细菌等微生物,但随着地下河运移距离的增加水生植物的相对贡献量逐渐减少.青木关地下河中正构烷烃TAR值对降雨有一定的指示意义,而饱和直链脂肪酸CPI、L/H值则指示细菌降解活动.  相似文献   

3.
夏季长江口中颗粒态及溶解态正构烷烃组成和迁移   总被引:10,自引:0,他引:10  
戚艳平  吴莹  张经  何青 《环境科学学报》2006,26(8):1354-1361
为阐释长江口颗粒态、溶解态正构烷烃的时空分布特征,并初步探讨其迁移循环机制.2001年7月在长江口分表、底层采集溶解态与颗粒态样品,采样区域的氯度跨度为0.028‰~16‰.样品经有机抽提和气相色谱定量分析,检测到表层溶解态、颗粒态正构烷烃总浓度分别为0.19~4.1μg·L-1和0.19~3.6μg·L-1;底层溶解态、颗粒态正构烷烃浓度分别为0.12~1.9μg·L-1和0.63~4.2μg·L-1.结果显示,长江口水体中正构烷烃碳数多分布在n-C15~n-C36间,正构烷烃碳数浓度分布呈高碳数优势、双峰型优势和低碳数优势3种关系.特征参数表明,长江口有机物呈显著的陆源有机质输入特征;且由长江口向外,陆源输入逐渐减弱.固-液分配系数Kd在不同站位和不同化合物间差异较大;同时Kd还存在颗粒物浓度效应.河口区颗粒态正构烷烃迁移的控制因素主要有潮周期的变化和沉积物再悬浮等.  相似文献   

4.
以渤海湾海域及黄河口外海域为研究区,采用GC/MS检测手段对两海域表层海水中溶解态有机质(0.7μm)及颗粒态有机质(0.7μm)的正构烷烃组分进行定性和定量分析,并分析其主要组成、分布、来源及输入方式,从而对正构烷烃类污染状况进行初步评价。定量分析的结果表明,渤海湾海域表层海水中正构烷烃含量为1570.9~1950.4 ng/L,黄河口外海域为353.1~672.7 ng/L;通过对研究区域表层海水中正构烷烃组成特征的分析得出,其主要来源是陆源高等植物、石油类产品和化石燃料燃烧产物,藻类对其贡献不能忽视;研究还表明,正构烷烃在溶解态和颗粒态有机质中分布是不同的,而且呈现某种规律。  相似文献   

5.
三门峡水库水体中不同形态汞的分布特征   总被引:2,自引:1,他引:1  
程柳  麻冰涓  周伟立  王力  职音  刘清伟  毛宇翔 《环境科学》2017,38(12):5032-5038
为了解三门峡水库水体中不同形态汞的分布特征,在丰水期和枯水期对三门峡水库进行采样,分别采用冷原子荧光光谱法(CVAFS)和蒸馏-乙基化衍生-气相色谱-冷原子荧光法(GC-CVAFS)测定水样中总汞、总甲基汞、溶解态总汞和溶解态甲基汞的浓度.结果表明,三门峡水库水体中总汞、溶解态汞和颗粒态汞浓度范围分别为1.65~9.65、0.80~3.16和0.70~7.81 ng·L~(-1),符合国家地表水环境质量标准(GB 3838-2002)一类水汞浓度标准限值;总甲基汞、溶解态甲基汞和颗粒态甲基汞浓度分别为0.05~0.36、0.02~0.14和ND~0.26 ng·L~(-1).三门峡水库水体总汞和甲基汞在季节和空间分布上没有呈现出明显的变化规律.总汞和甲基汞与未受污染的天然水体差别不大,水库未受到明显的汞污染.丰、枯水期沉积物中总汞浓度分别为(92.96±10.65)ng·g~(-1)和(80.06±19.14)ng·g~(-1),甲基汞浓度分别为(0.33±0.14)ng·g~(-1)和(0.50±0.19)ng·g~(-1).较低的甲基汞浓度说明在三门峡水库汞的迁移转化过程中,甲基化作用可能并非主要的过程,这可能与水体底层溶解氧浓度较高以及沉积物中有机质浓度较低有关.  相似文献   

6.
城市化进程对地下河中溶解态正构烷烃来源的影响   总被引:1,自引:1,他引:0  
廖昱  孙玉川  沈立成  梁作兵  王尊波 《环境科学》2016,37(10):3781-3788
为了探明城市化进程影响下地下河溶解态正构烷烃(D-ALK)的组分特征,于2014年11月至2015年4月,分别对受不同程度城市化进程影响的老龙洞与青木关两条地下河出口(老龙洞口、姜家泉)进行采样,利用气相色谱-质谱联用仪(GCMS)对样品中的D-ALK进行定量分析.结果表明,两地D-ALK碳数分布均为n C14~n C35.其中,姜家泉中的溶解态正构烷烃总量(DT-ALK)为102~356 ng·L~(-1),平均值为230 ng·L~(-1).2014年12月、2015年1月和4月,其正构烷烃碳数分布的峰型均为"单峰-前锋"型;LMH/HMH(n C-21/n C+22)为2.0~10;在n C14~n C25内碳优势指数(CPI14~25)为0.19~0.57,主碳峰均为C16(C_(max)16).2014年11月、2015年2月与3月,其碳数分布呈"双峰"形态,LMH/HMH与CPI14~25均小于1且C_(max)16;CPI24~35为1.2~23,C_(max)31或C_(max)33;Paq分别为0.2、0.7和0.1.其中,2014年11月与2015年3月的烷烃指数(AI)分别为0.95和0.98.老龙洞出口中的DT-ALK为110~697 ng·L~(-1),平均值为310 ng·L~(-1);各月碳数分布均呈现"单峰-前峰"峰型且C_(max)16,CPI14~25小于1.在旱季,由于受到不同人为活动的综合影响,以微生物输入为主的老龙洞中的溶解态正构烷烃在含量和组分的稳定性方面均大于以微生物和微生物、植物混合输入为主的姜家泉.  相似文献   

7.
为阐述青木关地下河中溶解态正构烷烃和脂肪酸的来源、迁移及转化研究,2013年7月31日、10月25日分别在青木关地下河入口、天窗和出口处进行采样,并利用气相色谱-质谱联用仪(GC-MS)对样品中溶解态正构烷烃、脂肪酸的组分进行定量分析.结果表明,7月和10月样品中溶解态正构烷烃、脂肪酸的平均含量分别为1 354、667 ng·L-1和24 203、2 526ng·L-1.溶解态正构烷烃和脂肪酸的含量随地下河运移距离的增加均呈降低的趋势;基于正构烷烃分子特征参数CPI、OEP、Paq和R(ΣC≤20含量与总量的百分比)发现7月青木关地下河中溶解态正构烷烃主要来源于细菌等微生物和藻类.10月主要来源于地表水生植物,但随着地下河运移距离的增加,藻类和细菌等微生物的贡献逐渐增大;溶解态脂肪酸C16:0比例最高,结合碳峰分布特征显示7月和10月水样中,藻类和细菌等微生物为地下河中溶解态脂肪酸的主要来源.  相似文献   

8.
本研究于2010年8月采集黄河河南段26个表层水及悬浮颗粒物样品,采用气相色谱-质谱联用仪(GC-MS)测定22种正构烷烃(C_(14)~C_(36))的含量,分析其组成特征,并利用特征参数解析其来源.结果表明,黄河河南段水相中正构烷烃浓度为521~5 843 ng·L~(-1),平均浓度为1 409 ng·L~(-1),组成特征以C_(25)为主峰碳的高碳单峰型.悬浮颗粒相中正构烷烃浓度范围为463~11 142 ng·L~(-1),平均浓度为1 951 ng·L~(-1),组成特征表现为双峰型,C_(25)为主峰碳的高碳烃占优势,同时存在低碳峰.多特征参数OEP、CPI、%Wax C_n以及TAR表明,黄河河南段水相及悬浮颗粒物中正构烷烃主要来源于化石燃料的燃烧,同时存在陆生植物来源.  相似文献   

9.
青木关地下河系统中不同含水介质下正构烷烃对比研究   总被引:1,自引:1,他引:0  
为阐释不同含水介质中正构烷烃的来源及迁移、变化特征,2013年7~11月期间,每月对大驴池、姜家泉两个表层岩溶泉进行取样,并利用气相色谱-质谱联用仪(GC-MS)对样品中溶解态正构烷烃的组分进行定量分析.结果表明,大驴池中溶解态正构烷(T-ALK)含量变化范围为175~3 279 ng·L-1,平均值为1 011ng·L-1,姜家泉变化范围为282~775 ng·L-1,平均值为527 ng·L-1.大驴池中高碳数(C25~C32)正构烷烃占T-ALK含量的27.89%~52.92%,CPI(碳优势指数)值介于0.64~5.86之间,OEP(奇偶优势指数)值介于0.57~4.56之间,L/H(短链/长链正构烷烃比值)的变化范围为0.33~0.50之间,随月份无规律变化;姜家泉中高碳数(C35~C32)正构烷烃占T-ALK含量的23.66%~49.73%,CPI值的变化范围为0.82~3.07,OEP值的变化范围为0.51~3.59,L/H值则在0.97~1.23之间波动,且随月份的增加呈增大的趋势.即在7~11月之间,大驴池中高等有机质输入所占的比重不断增大,而姜家泉中有机质的输入类型差异较大.L/H值不能反映两者有机质输入的相对贡献,初步认为和降雨或水洗效应相关.另外,TAR(陆生/水生类脂物比值)值对降雨有一定的响应.  相似文献   

10.
李丽  蒲俊兵  李建鸿  张陶 《环境科学》2017,38(2):527-534
岩溶水体中溶解无机碳(DIC)主要以HCO_3~-形式存在,其同位素(δ~(13)CDIC)被广泛用于示踪DIC的不同来源及其影响因素.为了解亚热带典型岩溶溪流溶解无机碳及其稳定同位素的分布规律,本文以广西柳州官村地下河补给的地表溪流为研究对象,对其水化学特征和δ~(13)CDIC进行分析.结果表明,溪流上游和下游的DIC与δ~(13)CDIC都表现出明显的时空变化特征,地下河出口(G1点)HCO_3~-旱季浓度变化范围为(4.73±0.14)mmol·L~(-1),而雨季为(4.23±0.68)mmol·L~(-1).溪流下游(G2点)HCO_3~-旱季浓度变化范围为(4.56±0.23)mmol·L~(-1),而雨季为(4.20±0.59)mmol·L~(-1).溪流上游的旱季δ~(13)CDIC变化范围为-12.22‰±0.49‰,雨季的变化范围为-12.28‰±0.82‰;溪流下游的旱季变化范围为-10.73±0.71‰,雨季的变化范围为-11.10‰±0.90‰.两个点水体DIC含量旱季均高于雨季,且G1点要高于下游G2点.两个点水体δ~(13)CDIC值旱季较雨季偏重,且G2点水体δ~(13)CDIC值显著高于G1点δ~(13)CDIC值.地下河水和溪流DIC主要来源于土壤CO2和碳酸盐岩溶蚀,但是溪流上游与下游DIC和δ~(13)CDIC值差异表明水体的CO2脱气作用,水生植物的光合作用显著影响了水体DIC和δ~(13)CDIC值.  相似文献   

11.
邢佳莉  曹芳  王谦  张煜娴  章炎麟 《环境科学》2022,43(6):2895-2905
大气细颗粒物(PM2.5)中的非极性化合物包括多环芳烃(PAHs)和正构烷烃(n-alkanes)等,通常用于识别污染来源,且对人体健康和环境有很重要的影响.为探究广西背景点PM2.5中非极性有机气溶胶的污染特征及来源,于2017年11月至2018年10月,对野外采集的PM2.5样品分析了其中17种多环芳烃和20种正构烷烃.结果表明,多环芳烃和正构烷烃全年的平均值分别为(4.28±4.25)ng·m-3和(13.7±14.72)ng·m-3;季节变化规律均是:冬季[(7.86±5.19)ng·m-3和(27.51±16.9)ng·m-3]>春季[(2.73±1.76)ng·m-3和(7.64±4.71)ng·m-3]>秋季[(2.34±1.45)ng·m-3和(7.01±4.55)ng·m-3]>夏季[(1.91±1.67)ng·...  相似文献   

12.
徐鑫磊  刘建超  陆光华 《环境科学》2020,41(5):2239-2246
检测了8种典型的药物活性化合物(PhACs)在污水处理厂尾水受纳河流中的赋存情况.结果显示8种PhACs夏、冬两季总浓度范围分别为27.6~226.4 ng·L-1和56.6~368.8 ng·L-1,其中咖啡因的浓度最高(16.2~125.8 ng·L-1),其次是罗红霉素(3.3~89.2 ng·L-1)和布洛芬(3.6~59.2 ng·L-1). 8种PhACs对绿藻、溞类和鱼类的总体生态风险(MRQ)在夏、冬两季分别为1.51、 0.08、 5.68和8.34、 0.22、 6.45,其中酮康唑、红霉素和布洛芬对藻类、溞类和鱼类MRQ的贡献率分别达到了49%、 85%和92%以上.从敏感物种来看,冬季绿藻对PhACs最为敏感,夏季鱼类对PhACs最为敏感.环境浓度下PhACs对大型溞21 d混合暴露实验结果显示:混合PhACs能够显著干扰大型溞的生长、生殖情况,显著提升了大型溞生殖能力和游泳活性,降低了心脏和胸肢跳动频率.  相似文献   

13.
湿地对环境污染起重要的缓冲作用,但岩溶区岩溶管道的存在会导致污染物沿高度发达的岩溶管道对地下环境产生威胁.因此,认识岩溶地貌环境中的污染物分布特征是污染物生态风险评估与防范的前提.以24种有机氯农药(OCPs)为研究对象,分析了桂林会仙湿地枯水期和丰水期水体和表层沉积物中OCPs的含量组成特征,解析其来源,并开展风险评价.结果表明,水体中ρ(OCPs)范围为3.17~92.50 ng ·L-1,沉积物中ω(OCPs)范围为1.16~219.52 ng ·g-1,呈现以六六六(HCHs)和滴滴涕(DDTs)为主的污染特征,水中OCPs含量表现为丰水期高于枯水期,沉积物中OCPs含量枯水期高于丰水期.特征比值法表明OCPs主要为长时间降解残留,部分点位有林丹的新输入.基于蒙特卡洛模拟开展健康风险评价,结果表明,95%分位数水平上,水体中OCPs对人体致癌风险大于1×10-6,存在潜在健康风险但可接受;非致癌风险均低于1,说明研究区水体中OCPs残留水平不足以对人体造成非致癌风险.  相似文献   

14.
三峡库区典型农田小流域水体汞的时空分布特征   总被引:1,自引:9,他引:1  
王娅  赵铮  木志坚  王定勇 《环境科学》2014,35(11):4095-4102
以三峡库区典型农田小流域——重庆涪陵王家沟为对象,分别于2012年11月~2013年9月对流域内不同类型水体总汞(THg)和总甲基汞(TMeHg)含量进行为期1 a的监测,探讨汞在农田流域水体中的时空分布特征.结果表明,流域内水体THg、TMeHg浓度范围分别为1.12~64.04 ng·L-1、0(未检出)~4.24 ng·L-1,均值分别为(13.54±10.55)ng·L-1、(0.22±0.42)ng·L-1,各类型水体THg均以颗粒态为主,雨水和池塘水TMeHg以颗粒态为主,井水和沟渠水则相反.在空间分布上,THg表现为雨水最高,池塘次之,井水最低,W2井相较于其他井THg浓度最高,各沟渠点水体THg浓度差异不大;TMeHg表现为沟渠水最高,池塘次之,井水最低,井水TMeHg浓度下游大于上游,各沟渠点水体TMeHg浓度差异大,甲基化率为沟渠水>池塘水>井水>雨水.在时间变化上,各类型水体THg浓度均表现为冷季高于暖季,TMeHg浓度则因水体类型而异.综合分析发现雨水是流域内汞的重要来源;农田流域颗粒物的迁移是汞、甲基汞迁移的主要途径,地表径流是影响流域对水库汞负荷贡献量的重要因素.  相似文献   

15.
为理解人工林土壤磷截留与淋溶流失特征随降水格局的变化,研究了2013年12月至2014年12月期间,四川盆地桢楠和马尾松人工林土壤磷元素在旱季早期、旱季末期、雨季早期、雨季中期和雨季末期5个关键时期的输入、淋溶输出和截留过程.通过连续采样,分析了水溶性全磷(TDP)、水溶性有机磷(DOP)和溶解性反应磷(DRP).研究结果表明,桢楠和马尾松林土壤对TDP的截留量别为2.65和0.84 kg·hm-2·a-1,土壤TDP淋溶输出量分别为1.10和3.23 kg·hm-2·a-1,其中,截留和淋失的土壤DOP占TDP的84%以上.桢楠和马尾松林土壤的磷截留和淋溶输出过程主要集中于旱季早期、旱季末期和雨季早期,并且两地土壤DOP和TDP的淋溶输出量及桢楠林土壤DOP和DRP的截留量都随这3个时期呈显著增加趋势,马尾松林土壤DRP的截留量随5个时期呈递减趋势,且雨季早期的土壤DOP的截留量为-0.46 kg·hm-2,表现为净流失.桢楠人工林土壤在雨季中期和雨季末期的DRP也表现为净流失.桢楠林土壤DRP的输入量和截留量与降水量呈显著正相关(p0.01),其输出量与降水量不相关.马尾松林土壤DOP和DRP的输入量、土壤DOP的截留量和土壤DRP的输出量与降水量显著正相关(p0.01).此外,桢楠和马尾松林土壤磷的淋溶输出和截留量与对应磷组分的输入量呈显著正相关(p0.01),但马尾松林土壤DOP的截留量与DOP的输入量不相关.由此可见,桢楠和马尾松人工林土壤磷的淋溶输出形式以DOP为主,主要发生在旱季和雨季早期.  相似文献   

16.
程柳  毛宇翔  麻冰涓  王梅 《环境科学》2015,36(1):121-129
为了解小浪底水库汞的赋存状况,采用冷原子荧光光谱法测定了小浪底水库水体、表层沉积物、沉积物间隙水以及鱼类肌肉样品中的总汞,采用乙基化衍生-气相色谱-原子荧光法测定了上述样品中的甲基汞,进而分析了小浪底水库鱼体中汞的富集状况.结果表明,小浪底水库水体中丰、枯水期总汞浓度分别为0.71~1.42 ng·L-1和0.90~2.49 ng·L-1,均符合国家地表水环境质量标准(GB 3838-2002)一类水汞浓度标准限值,水样中未检出甲基汞.丰、枯水期沉积物中总汞浓度分别为51.74~90.42 ng·g-1和95.66~172.52 ng·g-1,甲基汞浓度分别为0.09~0.26 ng·g-1和0.18~0.39 ng·g-1,甲基汞浓度较低,这可能与水体底层溶解氧浓度较高以及沉积物中有机碳浓度较低有关.丰、枯水期沉积物间隙水总汞浓度分别为4.27~9.49 ng·L-1和5.46~41.04 ng·L-1,甲基汞浓度分别为0.09~0.99 ng·L-1和0.07~1.01 ng·L-1,间隙水中总汞和甲基汞浓度明显高于上覆水体,与水体间存在汞浓度梯度,可能存在从沉积物间隙水向水体中的扩散.鱼体肌肉总汞浓度在43.47~304.98 ng·g-1之间,甲基汞浓度为10.77~265.23 ng·g-1,甲基汞低于食品安全国家标准规定的污染物限量(GB 2762-2012)(非肉食性鱼500 ng·g-1和肉食性鱼1 000 ng·g-1).水库鱼体总汞的生物富集系数分别为鳙鱼1.3×105,梭鱼9.3×104,鲫鱼4.7×104,白条5.0×104,黄颡鱼1.7×105,弓鱼3.9×104.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号