首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, many air quality monitoring programs have favored measurement of particles less than 2.5 µm (PM2.5) over particles less than 10 µm (PM10) in light of evidence that health impacts are mostly from the fine fraction. However, the coarse fraction (PM10-2.5) may have independent health impacts that support continued measurement of PM10 in some areas, such as those affected by road dust. The objective of this study was to evaluate the associations between different measures of daily PM exposure and two daily indicators of population health in seven communities in British Columbia, Canada, where road dust is an ongoing concern. The measures of exposure were PM10, PM2.5, PM10-2.5, PM2.5 adjusted for PM10-2.5, and PM10-2.5 adjusted for PM2.5. The indicators of population health were dispensations of the respiratory reliever medication salbutamol sulfate and nonaccidental mortality. This study followed a time-series design using Poisson regression over a 2003–2015 study period, with analyses stratified by three seasons: residential woodsmoke in winter; road dust in spring; and wildfire smoke in summer. A random-effects meta-analysis was conducted to establish a pooled estimate. Overall, an interquartile range increase in daily PM10-2.5 was associated with a 3.6% [1.6, 5.6] increase in nonaccidental mortality during the road dust season, which was reduced to 3.1% [0.8, 5.4] after adjustment for PM2.5. The adjusted coarse fraction had no effect on salbutamol dispensations in any season. However, an interquartile range increase in PM2.5 was associated with a 2.7% [2.0, 3.4] increase in dispensations during the wildfire season. These analyses suggest different impacts of different PM fractions by season, with a robust association between the coarse fraction and nonaccidental mortality in communities and periods affected by road dust. We recommend that PM10 monitoring networks be maintained in these communities to provide feedback for future dust mitigation programs.

Implications: There was a significant association between daily concentrations of the coarse fraction and nonaccidental mortality during the road dust season, even after adjustment for the fine fraction. The acute and chronic health effects associated with exposure to the coarse fraction remain unclear, which supports the maintenance of PM10 monitoring networks to allow for further research in communities affected by sources such as road dust.  相似文献   


2.
Bushfires, prescribed burns, and residential wood burning are significant sources of fine particles (aerodynamic diameter <2.5 μm; PM2.5) affecting the health and well-being of many communities. Despite the lack of evidence, a common public health recommendation is to remain indoors, assuming that the home provides a protective barrier against ambient PM2.5. The study aimed to assess to what extent houses provide protection against peak concentrations of outdoor PM2.5 and whether remaining indoors is an effective way of reducing exposure to PM2.5. The effectiveness of this strategy was evaluated by conducting simultaneous week-long indoor and outdoor measurements of PM2.5 at 21 residences in regional areas of Victoria, Australia. During smoke plume events, remaining indoors protected residents from peak outdoor PM2.5 concentrations, but the level of protection was highly variable, ranging from 12% to 76%. Housing stock (e.g., age of the house) and ventilation (e.g., having windows/doors open or closed) played a significant role in the infiltration of outdoor PM2.5 indoors. The results also showed that leaving windows and doors closed once the smoke plume abates trapped PM2.5 indoors and increased indoor exposure to PM2.5. Furthermore, for approximately 50% of households, indoor sources such as cooking activities, smoking, and burning candles or incense contributed significantly to indoor PM2.5.

Implications: Smoke from biomass burning sources can significantly impact on communities. Remaining indoors with windows and doors closed is a common recommendation by health authorities to minimize exposures to peak concentrations of fine particles during smoke plume events. Findings from this study have shown that the protection from fine particles in biomass burning smoke is highly variable among houses, with information on housing age and ventilation status providing an approximate assessment on the protection of a house. Leaving windows closed once a smoke plume abates traps particles indoors and increases exposures.  相似文献   


3.
The association between particulate pollution and cardiovascular morbidity and mortality is well established. While the cardiovascular effects of nationally regulated criteria pollutants (e.g., fine particulate matter [PM2.5] and nitrogen dioxide) have been well documented, there are fewer studies on particulate pollutants that are more specific for traffic, such as black carbon (BC) and particle number (PN). In this paper, we synthesized studies conducted in the Greater Boston Area on cardiovascular health effects of traffic exposure, specifically defined by BC or PN exposure or proximity to major roadways. Large cohort studies demonstrate that exposure to traffic-related particles adversely affect cardiac autonomic function, increase systemic cytokine-mediated inflammation and pro-thrombotic activity, and elevate the risk of hypertension and ischemic stroke. Key patterns emerged when directly comparing studies with overlapping exposure metrics and population cohorts. Most notably, cardiovascular risk estimates of PN and BC exposures were larger in magnitude or more often statistically significant compared to those of PM2.5 exposures. Across multiple exposure metrics (e.g., short-term vs. long-term; observed vs. modeled) and different population cohorts (e.g., elderly, individuals with co-morbidities, young healthy individuals), there is compelling evidence that BC and PN represent traffic-related particles that are especially harmful to cardiovascular health. Further research is needed to validate these findings in other geographic locations, characterize exposure errors associated with using monitored and modeled traffic pollutant levels, and elucidate pathophysiological mechanisms underlying the cardiovascular effects of traffic-related particulate pollutants.

Implications: Traffic emissions are an important source of particles harmful to cardiovascular health. Traffic-related particles, specifically BC and PN, adversely affect cardiac autonomic function, increase systemic inflammation and thrombotic activity, elevate BP, and increase the risk of ischemic stroke. There is evidence that BC and PN are associated with greater cardiovascular risk compared to PM2.5. Further research is needed to elucidate other health effects of traffic-related particles and assess the feasibility of regulating BC and PN or their regional and local sources.  相似文献   


4.
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.

In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.

Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.

Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.

Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.

Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.

A list of acronyms will be found at the end of the article.  相似文献   


5.
Numerous studies have reported a positive association between ambient fine particles and daily mortality, but little is known about the particle properties or environmental factors that may contribute to these effects. This study assessed potential modification of radon on PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm)-associated daily mortality in 108 U.S. cities using a two-stage statistical approach. First, city- and season-specific PM2.5 mortality risks were estimated using over-dispersed Poisson regression models. These PM2.5 effect estimates were then regressed against mean city-level residential radon concentrations to estimate overall PM2.5 effects and potential modification by radon. Radon exposure estimates based on measured short-term basement concentrations and modeled long-term living-area concentrations were both assessed. Exposure to PM2.5 was associated with total, cardiovascular, and respiratory mortality in both the spring and the fall. In addition, higher mean city-level radon concentrations increased PM2.5-associated mortality in the spring and fall. For example, a 10 µg/m3 increase in PM2.5 in the spring at the 10th percentile of city-averaged short-term radon concentrations (21.1 Bq/m3) was associated with a 1.92% increase in total mortality (95% CI: 1.29, 2.55), whereas the same PM2.5 exposure at the 90th radon percentile (234.2 Bq/m3) was associated with a 3.73% increase in total mortality (95% CI: 2.87, 4.59). Results were robust to adjustment for spatial confounders, including average planetary boundary height, population age, percent poverty and tobacco use. While additional research is necessary, this study suggests that radon enhances PM2.5 mortality. This is of significant regulatory importance, as effective regulation should consider the increased risk for particle mortality in cities with higher radon levels.

Implications: In this large national study, city-averaged indoor radon concentration was a significant effect modifier of PM2.5-associated total, cardiovascular, and respiratory mortality risk in the spring and fall. These results suggest that radon may enhance PM2.5-associated mortality. In addition, local radon concentrations partially explain the significant variability in PM2.5 effect estimates across U.S. cities, noted in this and previous studies. Although the concept of PM as a vector for radon progeny is feasible, additional research is needed on the noncancer health effects of radon and its potential interaction with PM. Future air quality regulations may need to consider the increased risk for particle mortality in cities with higher radon levels.  相似文献   


6.
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM2.5) and coarse (aerodynamic diameter 2.5–10 μm; PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 μg/m3) and PM10 (107.8 μg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 μg/m3) and PM10 (20 μg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: (1) soil/road dust, (2) incineration, and (3) traffic; and for PM2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting.

Implications: Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM2.5–10 is natural windblown soil and road dust, whereas the predominant source of PM2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.  相似文献   


7.
Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM10 and PM2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions.

Implications: Development of region-specific emission estimation techniques for PM10 and PM2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.  相似文献   


8.
As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5–3.3 m from the curb of two heavily traveled California arterial highways with 3300–5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter ≤2.5 µm; PM2.5) in the breathing zones (within 0.2 m from the nose and mouth) of each participant. At each bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 µg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 µg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 µg/m3, respectively, compared with a background level of 1.7 µg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16–35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway.

Implications: Rules banning smoking indoors have been widely adopted in the United States and in many countries. Some communities are considering smoking bans that would apply to outdoor locations. Although many measurements are available of pollutant concentrations from secondhand smoke at indoor locations, few measurements are available of exposure to secondhand smoke outdoors. This study provides new data on exposure to fine and ultrafine particles from secondhand smoke near a smoker outdoors. The levels are compared with the exposure measured next to a highway. The findings are important for policies that might be developed for reducing exposure to secondhand smoke outdoors.  相似文献   


9.
Metropolitan residents are concerned about their exposure to airborne pollutants. But establishing these exposures is challenging. A compact personal exposure kit (PEK) was developed to evaluate personal integrated exposure (PIE) from time-resolved data to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) in five microenvironments, including office, home, commuting, other indoor activities (other than home and office), and outdoor activities experienced both on weekdays and weekends. The study was conducted in Hong Kong. The PEK measured PM2.5, reported location and several other factors, stored collected data, as well as reported the data back to the investigators using global system for mobile communication (GSM) telemetry. Generally, PM2.5 concentrations in office microenvironment were found to be the smallest (13.0 μg/m3), whereas the largest PM2.5 concentration microenvironments were experienced during outdoor activities (54.4 μg/m3). Participants spent more than 85% of their time indoors, including in offices, homes, and other public indoor venues. On average, 42% and 81% of the time were spent in homes, which contributed 52% and 79% of PIE (during weekdays and weekends, respectively), suggesting that improvement of air quality in homes may reduce overall exposures and indicating the need for actions to mitigate possible public health burdens in Hong Kong. This study also found that various indoor/outdoor microenvironments experienced by urban office workers cannot be accurately represented by general urban air quality data reported from the regulatory monitoring. Such personalized air quality information, especially while in transit or in offices and homes, may provide improved information on population exposures to air pollution.

Implications: A newly developed personal exposure kit (PEK) was used to monitor PM2.5 exposure of metropolitan citizens in their daily life. Different microenvironments and time durations caused various personal integrated exposure (PIE). The stationary monitoring method for PIE was also compared and evaluated with PEK. Positive protection actions can be taken after understanding the major contribution to PM2.5 exposure.  相似文献   


10.
The objective of this study was to estimate the residential infiltration factor (Finf) of fine particulate matter (PM2.5) and to develop models to predict PM2.5 Finf in Beijing. Eighty-eight paired indoor–outdoor PM2.5 samples were collected by Teflon filters for seven consecutive days during both non-heating and heating seasons (from a total of 55 families between August, 2013 and February, 2014). The mass concentrations of PM2.5 were measured by gravimetric method, and elemental concentrations of sulfur in filter deposits were determined by energy-dispersive x-ray fluorescence (ED-XRF) spectrometry. PM2.5 Finf was estimated as the indoor/outdoor sulfur ratio. Multiple linear regression was used to construct Finf predicting models. The residential PM2.5 Finf in non-heating season (0.70 ± 0.21, median = 0.78, n = 43) was significantly greater than in heating season (0.54 ± 0.18, median = 0.52, n = 45, p < 0.001). Outdoor temperature, window width, frequency of window opening, and air conditioner use were the most important predictors during non-heating season, which could explain 57% variations across residences, while the outdoor temperature was the only predictor identified in heating season, which could explain 18% variations across residences. The substantial variations of PM2.5 Finf between seasons and among residences found in this study highlight the importance of incorporating Finf into exposure assessment in epidemiological studies of air pollution and human health in Beijing. The Finf predicting models developed in this study hold promise for incorporating PM2.5 Finf into large epidemiology studies, thereby reducing exposure misclassification.

Implications: Failure to consider the differences between indoor and outdoor PM2.5 may contribute to exposure misclassification in epidemiological studies estimating exposure from a central site measurement. This study was conducted in Beijing to investigate residential PM2.5 infiltration factor and to develop a localized predictive model in both nonheating and heating seasons. High variations of PM2.5 infiltration factor between the two seasons and across homes within each season were found, highlighting the importance of including infiltration factor in the assessment of exposure to PM2.5 of outdoor origin in epidemiological studies. Localized predictive models for PM2.5 infiltration factor were also developed.  相似文献   


11.
This study integrates the relationship between measured surface concentrations of particulate matter 10 μm or less in diameter (PM10), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 μm or less in diameter (PM2.5) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM2.5 (r2 = 0.62), and the two-variable (AOD-PM2.5) model predicted PM2.5 (r2 = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM2.5. For the relevant period in 2008, in Roda, VA, the predicted PM2.5 mass concentration is 9.11 ± 5.16 μg m-3 (mean ± 1SD).

Implications: This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or “hollows,” where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.  相似文献   


12.
This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM2.5) and ≤10 µm (PM10) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM2.5 concentrations the day before hospital admission and elevated PM10 concentrations 2 days before hospital admission. An increment of 10 μg/m3 in PM2.5 and PM10 was correlated with a 6% (95% CI 1.02–-1.10) and 4% (95% CI 1.00–1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM2.5 and PM10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China.

Implications: This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.  相似文献   


13.
The ambient air of the Monterrey Metropolitan Area (MMA) in Mexico frequently exhibits high levels of PM10 and PM2.5. However, no information exists on the chemical composition of coarse particles (PMc = PM10 – PM2.5). A monitoring campaign was conducted during the summer of 2015, during which 24-hr average PM10 and PM2.5 samples were collected using high-volume filter-based instruments to chemically characterize the fine and coarse fractions of the PM. The collected samples were analyzed for anions (Cl, NO3, SO42–), cations (Na+, NH4+, K+), organic carbon (OC), elemental carbon (EC), and 35 trace elements (Al to Pb). During the campaign, the average PM2.5 concentrations did not showed significance differences among sampling sites, whereas the average PMc concentrations did. In addition, the PMc accounted for 75% to 90% of the PM10 across the MMA. The average contribution of the main chemical species to the total mass indicated that geological material including Ca, Fe, Si, and Al (45%) and sulfates (11%) were the principal components of PMc, whereas sulfates (54%) and organic matter (30%) were the principal components of PM2.5. The OC-to-EC ratio for PMc ranged from 4.4 to 13, whereas that for PM2.5 ranged from 3.97 to 6.08. The estimated contribution of Secondary Organic Aerosol (SOA) to the total mass of organic aerosol in PM2.5 was estimated to be around 70–80%; for PMc, the contribution was lower (20–50%). The enrichment factors (EF) for most of the trace elements exhibited high values for PM2.5 (EF: 10–1000) and low values for PMc (EF: 1–10). Given the high contribution of crustal elements and the high values of EFs, PMc is heavily influenced by soil resuspension and PM2.5 by anthropogenic sources. Finally, the airborne particles found in the eastern region of the MMA were chemically distinguishable from those in its western region.

Implications: Concentration and chemical composition patterns of fine and coarse particles can vary significantly across the MMA. Public policy solutions have to be built based on these observations. There is clear evidence that the spatial variations in the MMA’s coarse fractions are influenced by clearly recognizable primary emission sources, while fine particles exhibit a homogeneous concentration field and a clear spatial pattern of increasing secondary contributions. Important reductions in the coarse fraction can come from primary particles’ emission controls; for fine particles, control of gaseous precursors—particularly sulfur-containing species and organic compounds—should be considered.  相似文献   


14.
The formation of PM2.5 (aerosol particulate matter less than 2.5 µm in aerodynamic diameter) in association with SO2 emission during sintering process has been studied by dividing the whole sintering process into six typical sampling stages. A low-pressure cascade impactor was used to collect PM2.5 by automatically segregating particulates into six sizes. It was found that strong correlation existed between the emission properties of PM2.5 and SO2. Wet mixture layer (overwetted layer and raw mixture layer) had the function to simultaneously capture SO2 and PM2.5 during the early sintering stages, and released them back into flue gas mainly in the flue gas temperature-rising period. CaSO4 crystals constituted the main SO2-related PM2.5 during the disappearing process of overwetted layer, which was able to form perfect individual crystals or to form particles with complex chemical compositions. Besides the existence of individual CaSO4 crystals, mixed crystals of K2SO4-CaSO4 in PM2.5 were also found during the first half of the temperature-rising period of flue gas. The interaction between fine-grained Ca-based fluxes, potassium vapors, and SO2 was the potential source of SO2-related PM2.5.

Implications: The emission property of PM2.5 and SO2 throughout the sintering process exhibited well similarity. This phenomenon tightened the relationship between the formation of PM2.5 and the emission of SO2. Through revealing the properties of SO2-related PM2.5 during sintering process, the potential interaction between fine-grained Ca-based fluxes, potassium vapors, and SO2 was found to be the source of SO2-related PM2.5. This information can serve as the guidance to develop efficient techniques to control the formation and emission of PM2.5 in practical sintering plants.  相似文献   


15.
There are few studies measuring exposure to outdoor tobacco smoke (OTS). Tobacco users often gather at the boundaries of tobacco-free campuses, resulting in unintended consequences. The objective of this study was to measure exposure levels from OTS on sidewalks bordering a tobacco-free university campus. Data were collected while walking along a sidewalk adjacent to a medium traffic road between May and August 2011. Monitoring occurred during “background,” “stop,” and “walk-through” conditions at and near hot spot area to measure fine particulate matter (<2.5 μm; PM2.5) from OTS using a portable aerosol monitor. The average PM2.5 levels during stop and walk-through conditions were significantly higher than during background conditions. PM2.5 peak occurrence rate and magnitude of peak concentration were significantly different depending on smoking occurrence. The peak occurrence rate during the stop condition was 10.4 times higher than during the background condition, and 3.1 times higher than during the walk-through condition. Average peak PM2.5 concentrations during the stop condition were 48.7% higher than during the background condition. In conclusion, individuals could be exposed to high levels of PM2.5 when stopping or even passing by smokers outdoors at the perimeter of tobacco-free campuses. The design and implementation of tobacco-free campus policies need to take into account the unintended consequences of OTS exposure at the boundaries.

Implications:In this study, outdoor tobacco smoke (OTS) exposure was measured at the perimeter of tobacco-free campus. OTS exposure could be determined by peak analysis. Peak occurrence rate and peak concentration for OTS exposure were identified by using peak analysis. People could be exposed to high levels of PM2.5 when standing or even passing by smokers at the perimeter of tobacco-free campus. OTS exposure measurement in other outdoor locations with smokers is needed to support outdoor smoking regulation.  相似文献   

16.
Dhaka, the capital of Bangladesh, is among the most polluted cities in the world. This research evaluates seasonal patterns, day-of-week patterns, spatial gradients, and trends in PM2.5 (<2.5 µm in aerodynamic diameter), PM10 (<10 µm in aerodynamic diameter), and gaseous pollutants concentrations (SO2, NO2, CO, and O3) monitored in Dhaka from 2013 to 2017. It expands on past work by considering multiple monitoring sites and air pollutants. Except for ozone, the average concentrations of these pollutants showed strong seasonal variation, with maximum during winter and minimum during monsoon, with the pollution concentration of PM2.5 and PM10 being roughly five- to sixfold higher during winter versus monsoon. Our comparisons of the pollutant concentrations with Bangladesh NAAQS and U.S. NAAQS limits analysis indicate particulate matter (PM2.5 and PM10) as the air pollutants of greatest concern, as they frequently exceeded the Bangladesh NAAQS and U.S. NAAQS, especially during nonmonsoon time. In contrast, gaseous pollutants reported far fewer exceedances throughout the study period. During the study period, the highest number of exceedances of NAAQS limits in Dhaka City (Darus-Salam site) were found for PM2.5 (72% of total study days), followed by PM10 (40% of total study days), O3 (1.7% of total study days), SO2 (0.38% of total study days), and CO (0.25% of total study days). The trend analyses results showed statistically significant positive slopes over time for SO2 (5.6 ppb yr?1, 95% confidence interval [CI]: 0.7, 10.5) and CO (0.32 ppm yr?1, 95% CI: 0.01, 0.56), which suggest increase in brick kilns operation and high-sulfur diesel use. Though statistically nonsignificant annual decreasing slopes for PM2.5 (?4.6 µg/m3 yr?1, 95% CI: ?12.7, 3.6) and PM10 (?2.7 µg/m3 yr?1, 95% CI: ?7.9, 2.5) were observed during this study period, the PM2.5 concentration is still too high (~ 82.0 µg/m3) and can cause severe impact on human health.

Implications: This study revealed key insights into air quality challenges across Dhaka, Bangladesh, indicating particulate matter (PM) as Dhaka’s most serious air pollutant threat to human health. The results of these analyses indicate that there is a need for immediate further investigations, and action based on those investigations, including the conduct local epidemiological PM exposure-human health effects studies for this city, in order to determine the most public health effective interventions.  相似文献   


17.
Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM2.5 concentration (13.2 ± 13.7 µg/m3) was similar to the average measured Grimm 11-R PM2.5 concentration (11.3 ± 15.1 µg/m3). The overall correlation (r2) for PM2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m3) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m3) with an r2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.

Implications: The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM2.5 and coarse PM (PM10-2.5) mass concentrations were estimated using a DC1700 PM sensor. The calculated PM mass concentrations from the number concentrations of DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.  相似文献   


18.
As power production from renewable energy and natural gas grows, closures of some coal-fired power plants in Texas become increasingly likely. In this study, the potential effects of such closures on air quality and human health were analyzed by linking a regional photochemical model with a health impacts assessment tool. The impacts varied significantly across 13 of the state’s largest coal-fired power plants, sometimes by more than an order of magnitude, even after normalizing by generation. While some power plants had negligible impacts on concentrations at important monitors, average impacts up to 0.5 parts per billion (ppb) and 0.2 µg/m3 and maximum impacts up to 3.3 ppb and 0.9 µg/m3 were seen for ozone and fine particulate matter (PM2.5), respectively. Individual power plants impacted average visibility by up to 0.25 deciviews in Class I Areas. Health impacts arose mostly from PM2.5 and were an order of magnitude higher for plants that lack scrubbers for SO2. Rankings of health impacts were largely consistent across the base model results and two reduced form models. Carbon dioxide emissions were relatively uniform, ranging from 1.00 to 1.26 short tons/MWh, and can be monetized based on a social cost of carbon. Despite all of these unpaid externalities, estimated direct costs of each power plant exceeded wholesale power prices in 2016.

Implications: While their CO2 emission rates are fairly similar, sharply different NOx and SO2 emission rates and spatial factors cause coal-fired power plants to vary by an order of magnitude in their impacts on ozone, particulate matter, and associated health and visibility outcomes. On a monetized basis, the air pollution health impacts often exceed the value of the electricity generated and are of similar magnitude to climate impacts. This suggests that both air pollution and climate should be considered if externalities are used to inform decision making about power-plant dispatch and retirement.  相似文献   


19.
Organic carbon (OC), elemental carbon (EC), and 90 organic compounds (36 polycyclic aromatic hydrocarbons [PAHs], 25 n-alkane homologues, 17 hopanes, and 12 steranes) were concurrently quantified in atmospheric particulate matter of PM2.5 and PM10. The 24-hr PM samples were collected using Harvard Impactors at a suburban site in Doha, Qatar, from May to December 2015. The mass concentrations (mean ± standard deviation) of PM2.5 and PM10 were 40 ± 15 and 145 ± 70 µg m?3, respectively, exceeding the World Health Organization (WHO) air quality guidelines. Coarse particles comprised 70% of PM10. Total carbonaceous contents accounted for 14% of PM2.5 and 10% of PM10 particulate mass. The major fraction (90%) of EC was associated with the PM2.5. In contrast, 70% of OC content was found in the PM2.5–10 fraction. The secondary OC accounted for 60–68% of the total OC in both PM fractions, indicating photochemical conversions of organics are much active in the area due to higher air temperatures and solar radiations. Among the studied compounds, n-alkanes were the most abundant group, followed by PAHs, hopanes, and steranes. n-Alkanes from C25 to C35 prevailed with a predominance of odd carbon numbered congeners (C27–C31). High-molecular-weight PAHs (5–6 rings) also prevailed, within their class, with benzo[b + j]fluoranthene (Bb + jF) being the dominant member. PAHs were mainly (80%) associated with the PM2.5 fraction. Local vehicular and fugitive emissions were predominant during low-speed southeasterly winds from urban areas, while remote petrogenic/biogenic emissions were particularly significant under prevailing northwesterly wind conditions.

Implications: An unprecedented study in Qatar established concentration profiles of EC, OC, and 90 organic compounds in PM2.5 and PM10. Multiple tracer organic compounds for each source can be used for convincing source apportionment. Particle concentrations exceeded WHO air quality guidelines for 82–96% of the time, revealing a severe problem of atmospheric PM in Doha. Dominance of EC and PAHs in fine particles signifies contributions from combustion sources. Dependence of pollutants concentrations on wind speed and direction suggests their significant temporal and spatial variability, indicating opportunities for improving the air quality by identifying sources of airborne contaminants.  相似文献   


20.
The U.S. Environmental Protection Agency (EPA), state and local agencies have focused their efforts in assessing secondary fine particulate matter (aerodynamic diameter ≤2.5 µm; PM2.5) formation in prevention of significant deterioration (PSD) air dispersion modeling. The National Association of Clean Air Agencies (NACAA) developed a method to account for secondary PM2.5 formation by using sulfur dioxide (SO2) and nitrogen oxides (NOx) offset ratios. These ratios are used to estimate the secondary formation of sulfate and nitrate PM2.5. These ratios were first introduced by the EPA for nonattainment areas in the Implementation of the New Source Review (NSR) Program for Particulate Matter Less than 2.5 Micrometers (PM2.5), 73 FR 28321, to offset emission increases of direct PM2.5 emissions with reductions of PM2.5 precursors and vice versa. Some regulatory agencies such as the Minnesota Pollution Control Agency (MPCA) have developed area-specific offset ratios for SO2 and NOx based on Comprehensive Air Quality Model with Extensions (CAMx) evaluations for air dispersion modeling analyses. The current study evaluates the effect on American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) predicted concentrations from the use of EPA and MPCA developed ratios. The study assesses the effect of these ratios on an electric generating utility (EGU), taconite mine, food processing plant, and a pulp and paper mill. The inputs used for these four scenarios are based on common stack parameters and emissions based on available data. The effect of background concentrations also evaluates these scenarios by presenting results based on uniform annual PM2.5 background values. This evaluation study helps assess the viability of the offset ratio method developed by NACAA in estimating primary and secondary PM2.5 concentrations. An alternative Tier 2 approach to combine modeled and monitored concentrations is also presented.

Implications:

On January 4, 2012, the EPA committed to engage in rulemaking to evaluate updates to the Guideline on Air Quality Models (Appendix W of 40 CFR 51) and, as appropriate, incorporate new analytical techniques or models for secondary PM2.5. As a result, the National Association of Clean Air Agencies (NACAA) developed a screening method involving offset ratios to account for secondary PM2.5 formation. The use of this method is promising to evaluate total (direct and indirect) PM2.5 impacts for permitting purposes. Therefore, the evaluation of this method is important to determine its viability for widespread use.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号