首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have attributed toxic effects of ambient fine particulate matter (aerodynamic diameter  2.5 μm; PM2.5) to physical and/or chemical properties rather than total mass. However, identifying specific components or sources of a complex mixture of ambient PM2.5 that are responsible for adverse health effects is still challenging. In order to improve our understanding of source-to-receptor pathways for ambient PM2.5 (links between sources of ambient PM2.5 and measures of biologically relevant dose), integrated inhalation toxicology studies using animal models and concentrated air particles (CAPs) were completed in southwest Detroit, a community where the pediatric asthma rate is more than twice the national average. Ambient PM2.5 was concentrated with a Harvard fine particle concentrator housed in AirCARE1, a mobile air research laboratory which facilitates inhalation exposure studies in real-world settings. Detailed characterizations of ambient PM2.5 and CAPs, identification of major emission sources of PM2.5, and quantification of trace elements in the lung tissues of laboratory rats that were exposed to CAPs for two distinct 3-day exposure periods were completed.This paper describes the physical/chemical properties and sources of PM2.5, pulmonary metal concentrations and meteorology from two different 3-day exposure periods—both conducted at the southwest Detroit location in July 2003—which resulted in disparate biological effects. More specifically, during one of the exposure periods, ambient PM2.5-derived trace metals were recovered from lung tissues of CAPs-exposed animals, and these metals were linked to local combustion point sources in southwest Detroit via receptor modeling and meteorology; whereas in the other exposure period, no such trace metals were observed. By comparing these two disparate results, this investigation was able to define possible links between PM2.5 emitted from refineries and incinerators and biologically relevant dose, which in turn may be associated with observed health effects.  相似文献   

2.
ABSTRACT

Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 μm (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-tem-perature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time- and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research.  相似文献   

3.
Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 microns (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-temperature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time- and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research.  相似文献   

4.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   

5.
A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

6.
Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5. The mean concentration of ambient PM2.5 was 42.69-53.68 micrograms/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4(2-) (12.8-15.1%), NO3- (8.1-10.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4(2-) and NO3-), and outdoor burning of agriculture wastes (13-17%).  相似文献   

7.
To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2.5 particles collected in the Sihwa area. The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

8.
Personal exposure to fine particulate matter (PM2.5) is due to both indoor and outdoor sources. Contributions of sources to personal exposure can be quite different from those observed at ambient sampling locations. The primary goal of this study was to investigate the effectiveness of using trace organic speciation data to help identify sources influencing PM2.5 exposure concentrations. Sixty-four 24-h PM2.5 samples were obtained on seven different subjects in and around Boulder, CO. The exposure samples were analyzed for PM2.5 mass, elemental and organic carbon, organic tracer compounds, water-soluble metals, ammonia, and nitrate. This study is the first to measure a broad distribution of organic tracer compounds in PM2.5 personal samples. PM2.5 mass exposure concentrations averaged 8.4 μg m?3. Organic carbon was the dominant constituent of the PM2.5 mass. Forty-four organic species and 19 water-soluble metals were quantifiable in more than half of the samples. Fifty-four organic species and 16 water-soluble metals had measurement signal-to-noise ratios larger than two after blank subtraction.The dataset was analyzed by Principal Component Analysis (PCA) to determine the factors that account for the greatest variance. Eight significant factors were identified; each factor was matched to its likely source based primarily on the marker species that loaded the factor. The results were consistent with the expectation that multiple marker species for the same source loaded the same factor. Meat cooking was an important source of variability. The factor that represents meat cooking was highly correlated with organic carbon concentrations (r = 0.84). The correlation between ambient PM2.5 and PM2.5 exposure was relatively weak (r = 0.15). Time participants spent performing various activities was generally not well correlated with PCA factor scores, likely because activity duration does not measure emissions intensity. The PCA results demonstrate that organic tracers can aid in identifying factors that influence personal exposures to PM2.5.  相似文献   

9.
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.  相似文献   

10.
11.
To characterize the redox activity profiles of atmospheric aerosols from primary (traffic) and secondary photochemical sources, ambient quasi-ultrafine particles were collected near downtown Los Angeles in two different time periods – morning (6:00–9:00 PDT) and afternoon (11:00–14:00 PDT) in the summer of 2008. Detailed chemical analysis of the collected samples, including water-soluble elements, inorganic ions, organic species and water soluble organic carbon (WSOC) was conducted and redox activity of the samples was measured by two different assays: the dithiothreitol (DTT) and the macrophage reactive oxygen species (ROS) assays. Tracers of secondary photochemical reactions, such as sulfate and organic acids were higher (2.1 ± 0.6 times for sulfate, and up to 3 times for the organic acids) in the afternoon period. WSOC was also elevated by 2.5 ± 0.9 times in the afternoon period due to photo-oxidation of primary particles during atmospheric aging. Redox activity measured by the DTT assay was considerably higher for the samples collected during the afternoon; on the other hand, diurnal trends in the ROS-based activity were not consistent between the morning and afternoon periods. A linear regression between redox activity and various PM chemical constituents showed that the DTT assay was highly correlated with WSOC (R2 = 0.80), while ROS activity was associated mostly with water soluble transition metals (Vanadium, Nickel and Cadmium; R2 > 0.70). The DTT and ROS assays, which are based on the generation of different oxidizing species by chemical PM constituents, provide important information for elucidating the health risks related to PM exposure from different sources. Thus, both primary and secondary particles possess high redox activity; however, photochemical transformations of primary emissions with atmospheric aging enhance the toxicological potency of primary particles in terms of generating oxidative stress and leading to subsequent damage in cells.  相似文献   

12.
The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0–16.8% and 4.0–19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.  相似文献   

13.
Measurement of daily size-fractionated ambient PM10 mass, metals, inorganic ions (nitrate and sulfate) and elemental and organic carbon were conducted at source (Downey) and receptor (Riverside) sites within the Los Angeles Basin. In addition to 24-h concentration measurements, the diurnal patterns of the trace element and metal content of fine (0–2.5 μm) and coarse (2.5–10 μm) PM were studied by determining coarse and fine PM metal concentrations during four time intervals of the day.The main source of crustal metals (e.g., Al, Si, K, Ca, Fe and Ti) can be attributed to the re-suspension of dust at both source and receptor sites. All the crustals are predominantly present in supermicron particles. At Downey, potentially toxic metals (e.g., Pb, Sn, Ni, Cr, V, and Ba) are predominantly partitioned (70–85%, by mass) in the submicron particles. Pb, Sn and Ba have been traced to vehicular emissions from nearby freeways, whereas Ni and Cr have been attributed to emissions from powerplants and oil refineries upwind in Long Beach. Riverside, adjacent to Southern California deserts, exhibits coarser distributions for almost all particle-bound metals as compared to Downey. Fine PM metal concentrations in Riverside seem to be a combination of few local emissions and those transported from urban Los Angeles. The majority of metals associated with fine particles are in much lower concentrations at Riverside compared to Downey. Diurnal patterns of metals are different in coarse and fine PM modes in each location. Coarse PM metal concentration trends are governed by variations in the wind speeds in each location, whereas the diurnal trends in the fine PM metal concentrations are found to be a function both of the prevailing meteorological conditions and their upwind sources.  相似文献   

14.
Mot time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects. Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2.5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4(2-), which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2.5 samples as an indicator of accumulation mode particulate matter of ambient origin. The mean personal and ambient PM2.5 concentrations were 18 micrograms/m3 and 11 micrograms/m3, respectively. In analyses relating personal and ambient measurements, ambient concentrations were expressed either as an average of the values obtained from five ambient monitoring sites for each day of personal sampling, or as the concentration obtained at the ambient site closest to each subject's home. The mean personal to ambient concentration ratio of all samples was 1.75 (range = 0.24 to 10.60) for PM2.5, and 0.75 (range = 0.09 to 1.42) for SO4(2-). Regression analyses were conducted for each subject separately and on pooled data. The median correlation (Pearson's r) between personal and average ambient PM2.5 concentrations was 0.48 (range = -0.68 to 0.83). Using SO4(2-) as the exposure metric, the median r between personal and average ambient concentrations was 0.96 (range = 0.66 to 1.0). Use of the closest ambient site did not improve the median correlation of the group for either PM2.5 or SO4(2-). All pooled analyses resulted in lower correlation coefficients than the median correlation coefficient of individual regressions. Personal SO4(2-) was more highly correlated with all ambient measures than PM2.5. Inclusion of time-activity and dwelling characteristics data did not result in a useful predictive regression model for PM2.5 personal exposure, but improved the model fit from simply regressing against ambient concentration (R2 = 0.27). The model for SO4(2-) was predictive (R2 = 0.82), as personal exposures were largely explained by ambient levels. These results indicate a relatively low correlation between personal exposure and ambient PM2.5 that is not improved by assigning exposure to the closest ambient monitor. The correlation between personal exposure and ambient concentration is high, however, when using SO4(2-), an indicator of accumulation mode particulate matter of ambient origin.  相似文献   

15.
The capillary electrophoresis (CE) method combined with a sequential extraction was applied to determine the distribution of Fe, Zn, Cu, Mn and Cd in urban ambient air PM2.5 samples. PM2.5 was collected on Teflon filters with dichotomous sampler, and the modified extraction procedure following the BCR leaching procedure was used to chemically fractionate metals into "easily exchangeable" with water, "acid extractable" with 0.11 mol/l acetic acid, "reducible" with 0.1 mol/l hydroxylamine hydrochloride acidified to pH 2.0 with nitric acid, and "oxidisable" with oxidation by 8.8 mol/l hydrogen peroxide (H2O2) followed by extraction with 1.0 mol/l ammonium acetate. Based on the obtained results it was concluded that the application of the studied methodology provides chemical fractionation data that reflect the general sources and potential health hazards of the studied metals.  相似文献   

16.
ABSTRACT

Air pollution studies are based on individual-level health response data and group-level exposure data. Therefore, exposure misclassification occurs, and the results may be biased to an unknown magnitude and direction. Testing the validity of such associations requires a study design using individual-level data for both exposure and response. One can test the plausibility of group-level PM risk estimates by comparing them to individual-level estimates of risk from constituents of ambient air. The twofold purpose of this review is to consider the internal consistency of risks estimated from the three major PM cohort studies and to determine individual-level mortality risks associated with ambient concentrations of tobacco smoke and occupational exposures and compare them with risks associated with ambient PM.

The paper demonstrates the risks are not consistent within and between the PM cohort studies. Higher ambient concentration risks (ACRs) from the ambient PM cohort studies are not coherent with ACRs derived from individual-level smoking and occupational risks for total, cardiopulmonary, and lung cancer mortality. Individual-level studies suggest increased risk of mortality cannot be measured with reliability at concentrations found in ambient air.  相似文献   

17.
We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.  相似文献   

18.
Air pollution studies are based on individual-level health response data and group-level exposure data. Therefore, exposure misclassification occurs, and the results may be biased to an unknown magnitude and direction. Testing the validity of such associations requires a study design using individual-level data for both exposure and response. One can test the plausibility of group-level PM risk estimates by comparing them to individual-level estimates of risk from constituents of ambient air. The twofold purpose of this review is to consider the internal consistency of risks estimated from the three major PM cohort studies and to determine individual-level mortality risks associated with ambient concentrations of tobacco smoke and occupational exposures and compare them with risks associated with ambient PM. The paper demonstrates the risks are not consistent within and between the PM cohort studies. Higher ambient concentration risks (ACRs) from the ambient PM cohort studies are not coherent with ACRs derived from individual-level smoking and occupational risks for total, cardiopulmonary, and lung cancer mortality. Individual-level studies suggest increased risk of mortality cannot be measured with reliability at concentrations found in ambient air.  相似文献   

19.
The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30-35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2-4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4(2-) NO3-, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3-, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

20.
Two collaborative studies have been conducted by the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) and National Health and Environmental Effects Research Laboratory to determine personal exposures and physiological responses to particulate matter (PM) of elderly persons living in a retirement facility in Fresno, CA. Measurements of PM and other criteria air pollutants were made inside selected individual residences within the retirement facility and at a central outdoor site on the premises. In addition, personal PM exposure monitoring was conducted for a subset of the participants, and ambient PM monitoring data were available for comparison from the NERL PM research monitoring platform in central Fresno. Both a winter (February 1-28, 1999) and a spring (April 19-May 16, 1999) study were completed so that seasonal effects could be evaluated. During the spring study, a more robust personal exposure component was added, as well as a more detailed evaluation of physical factors, such as air-exchange rate, that are known to influence the penetration of particles into the indoor environment. In this paper, comparisons are made among measured personal PM exposures and PM mass concentrations measured at the NERL Fresno Platform site, outside on the premises of the retirement facility, and inside selected residential apartments at the facility during the two 28-day study periods. The arithmetic daily mean personal PM2.5 exposure during the winter study period was 13.3 micrograms/m3, compared with 9.7, 20.5, and 21.7 micrograms/m3 for daily mean overall apartment, outdoor, and ambient (i.e., platform) concentrations, respectively. The daily mean personal PM2.5 exposure during the spring study period was 11.1 micrograms/m3, compared with 8.0, 10.1, and 8.6 micrograms/m3 for the daily mean apartment, outdoor, and ambient concentrations, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号