首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, two-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m3 LFG/ton waste landfilled and 0.08 MWhr/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m3/MWhr.

Implications: The paper will be useful for local authorities who need to manage municipal waste by using landfills. The paper will also be useful for investors who want to evaluate the energy production potential of municipal wastes and the factors affecting the energy generation process mostly for economical purposes. Landfills can be regarded as energy sources and their potentials need to be investigated. The paper will also be useful for policymakers dealing with energy issues. The paper contains information on real practical data such as engine working hours, equation to estimate the necessary power for a given amount of landfilled waste, and son on.  相似文献   


2.
以渗滤液回灌为核心的填埋场生化反应器是当今国际固体废物研究的新方向 ,其具有减少渗滤液处理难度和加速填埋场稳定化的作用 ,其中控制填埋场水分是关键。本文通过对填埋场水分运移特征的分析 ,建立了渗滤液回灌条件下 ,生化反应器填埋场水分迁移的饱和 -非饱和三维非稳定数学模型 ,并求其有限单元数值解 ,定量模拟和预报不同回灌条件下填埋场水分的时空分布规律并进行实用研究。针对重庆市长生桥卫生填埋场设计情况和实际条件 ,运移模拟模型分析了水平沟和竖式井回灌条件下填埋场内水分的分布规律 ,证明了协同回灌方式的有效性  相似文献   

3.
Nitrous oxide (N2O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N2O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N2O emission with ammonia removal. N2O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N2O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N2O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30–40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O2 content can infuse N2O production during nitrification and high O2 inhibit denitrification which would affect N2O production. The findings provide insights concerning the production potentials of N2O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover.

Implications: Investigation of nitrous oxide production potential during in situ aeration in an old landfill site revealed that increased temperatures and oxygen content inside the landfill site are potential factors for nitrous oxide production. Temperatures within the range of optimum nitrification process (30–40°C) induce nitrous oxide formation with high oxygen concentration as a by-product of nitrogen turnover. Decrease of oxygen content during nitrification leads increase of nitrous oxide production, while temperatures above 40°C with moderate and/or low oxygen content inhibit nitrous oxide generation.  相似文献   


4.
Landfill gas (LFG) management is one of the most important tasks for landfill operation and closure because of its impact in potential global warming. The aim of this work is to present a case history evaluating an LFG capture and treatment system for the present landfill facility in Córdoba, Argentina. The results may be relevant for many developing countries around the world where landfill gas is not being properly managed. The LFG generation is evaluated by modeling gas production applying the zero-order model, Landfill Gas Emissions Model (LandGEM; U.S. Environmental Protection Agency [EPA]), Scholl Canyon model, and triangular model. Variability in waste properties, weather, and landfill management conditions are analyzed in order to evaluate the feasibility of implementing different treatment systems. The results show the advantages of capturing and treating LFG in order to reduce the emissions of gases responsible for global warming and to determine the revenue rate needed for the project’s financial requirements. This particular project reduces by half the emission of equivalent tons of carbon dioxide (CO2) compared with the situation where there is no gas treatment. In addition, the study highlights the need for a change in the electricity prices if it is to be economically feasible to implement the project in the current Argentinean electrical market.

Implications: Methane has 21 times more greenhouse gas potential than carbon dioxide. Because of that, it is of great importance to adequately manage biogas emissions from landfills. In addition, it is environmentally convenient to use this product as an alternative energy source, since it prevents methane emissions while preventing fossil fuel consumption, minimizing carbon dioxide emissions. Performed analysis indicated that biogas capturing and energy generation implies 3 times less equivalent carbon dioxide emissions; however, a change in the Argentinean electrical market fees are required to guarantee the financial feasibility of the project.  相似文献   


5.
Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day).

Implications: In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.  相似文献   


6.
Limitations of the toxicity characteristic leaching procedure (TCLP) for simulating pollutant leaching from wastes disposed of in full-scale landfills are well understood in the waste management profession; the TCLP solution has a lower pH and greater organic acid content than typical landfill leachate. The TCLP serves its intended regulatory objective, however, as long as a conservative estimate of leaching is provided. Here, we examine TCLP’s ability to represent worst-case leaching conditions for monofilled municipal solid waste incineration (MSWI) ash. A critical examination of TCLP’s applicability to MSWI ash is especially relevant, as ash management at MSWI facilities often centers on passing TCLP, regardless of environmental risk posed by the ash or its recyclability. Multiple batch leaching tests were conducted on different MSWI ash streams: mixed ash, fly ash, and different size fractions of bottom ash. Batch-test results were compared with leachate simulating MSWI ash monofills. The TCLP did not consistently provide the most conservative estimate of leaching, supporting the need to consider alternative methodologies in future regulatory development.

Implications: This paper analyzes the existing hazardous waste regulatory testing requirement for municipal solid waste incinerator (MSWI) ash management to evaluate whether the TCLP serves its intended purpose in providing the most conservative estimate of landfilled MSWI ash. The results will serve as guidance and motivation for policy makers and the regulatory community to reevaluate the TCLP’s application for characterizing MSWI ash leaching in certain disposal scenarios and could promote consideration of alternative testing procedures based upon results of this study. This study serves to promote representative and accurate quantification of leaching risk from MSWI ash.  相似文献   


7.
One of the most significant environmental problems arising from landfills is the emission of methane into the atmosphere. In this study, methane emissions from a currently in-use Spanish landfill were modeled as well as being experimentally measured using a two-step method. The first step involved a qualitative walkover survey to detect where gases were being emitted on the surface of the landfill. The second stage comprised a quantitative analysis of these surface methane emissions at a selected number of points on the landfill surface using a specially designed flux chamber. The statistical analysis of the data obtained was based on the Sichel function and resulted in an average emission rate of 74.9 g·m?2·day?1, with 27.8 and 202.1 g·m?2·day?1 as the lower and upper limits of the 95% confidence interval, respectively. The total emission for the landfill, with an emitting surface of 335,000 m2, is 9.16 × 103 ton/yr. These values have been compared with those from three different models, with the model results being above the calculated mean emissions measured at the landfill, but below the upper confidence limit at 95%.

Implications: One of the main environmental problems arising from the presence of landfills is the emission of biogas (which mainly contains methane and carbon dioxide) into the atmosphere. Several experimental methods as well as models have been developed to quantify these emissions. In this work, the authors have compared the results obtained using experimental measurements with those provided by some local and international models using the default parameters proposed. The results obtained from the experimental method are in accordance with those provided by the models, although the models could be slightly overestimating these emissions.  相似文献   


8.
High-density polyethylene (HDPE) membranes are commonly used as a cover component in sanitary landfills, although only limited evaluations of its effect on greenhouse gas (GHG) emissions have been completed. In this study, field GHG emission were investigated at the Dongbu landfill, using three different cover systems: HDPE covering; no covering, on the working face; and a novel material-Oreezyme Waste Cover (OWC) material as a trial material. Results showed that the HDPE membrane achieved a high CH4 retention, 99.8% (CH4 mean flux of 12 mg C m-2 h-1) compared with the air-permeable OWC surface (CH4 mean flux of 5933 mg C m-2 h-1) of the same landfill age. Fresh waste at the working face emitted a large fraction of N2O, with average fluxes of 10 mg N m-2 h-2, while N2O emissions were small at both the HDPE and the OWC sections. At the OWC section, CH4 emissions were elevated under high air temperatures but decreased as landfill age increased. N2O emissions from the working face had a significant negative correlation with air temperature, with peak values in winter. A massive presence of CO2 was observed at both the working face and the OWC sections. Most importantly, the annual GHG emissions were 4.9 Gg yr-1 in CO2 equivalents for the landfill site, of which the OWC-covered section contributed the most CH4 (41.9%), while the working face contributed the most N2O (97.2%). HDPE membrane is therefore, a recommended cover material for GHG control.

Implications: Monitoring of GHG emissions at three different cover types in a municipal solid waste landfill during a 1-year period showed that the working face was a hotspot of N2O, which should draw attention. High CH4 fluxes occurred on the permeable surface covering a 1- to 2-year-old landfill. In contrast, the high-density polyethylene (HDPE) membrane achieved high CH4 retention, and therefore is a recommended cover material for GHG control.  相似文献   


9.
Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R 2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties.

Implications:

To date, no attempts have been made to predict the percent of CH4 oxidation within landfill cover soils using an ANN. This paper presents modeling of CH4 oxidation in landfill cover soil using ANN based on field measurements data under tropical climate conditions in Malaysia. The proposed ANN oxidation model can be used to predict the percentage of CH4 oxidation from other landfills with similar climate conditions, cover soil texture, and other properties. The predicted value of CH4 oxidation can be used in conjunction with the Intergovernmental Panel on Climate Change (IPCC) First Order Decay (FOD) model by landfill operators to accurately estimate total CH4 emission and how much it contributes to global warming.  相似文献   


10.
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L0) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia’s Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (kc) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models.

Implications: Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.  相似文献   


11.
A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Gas samples were taken from vertical gas monitoring pipes installed along transects at two sections (called new and old) of an abandoned waste dump site in Sri Lanka. N2O concentrations varied especially widely, by more than three orders of magnitude (0.046–140 ppmv). The nitrogen/argon ratio of landfill gas was normally higher than that of fresh air, implying that denitrification occurred in the dump site. Argon assays indicate that both N2 and N2O production occurred inside waste and more significantly in the old section. The Ar assay would help for evaluations of N2O emission in developing countries.

Implications: A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Argon assays indicate that both N2 and N2O production occurred inside waste and more significantly in the old section.  相似文献   


12.
In health care facilities, pharmaceutical waste is generally discharged down the drain or sent to landfill. Poor knowledge about their potential downstream impacts may be a primary factor for improper disposal behavior. The objective of this study was to determine the impact of an intervention program on knowledge and practice of health care staff regarding pharmaceutical waste management. The study was designed as a pre/posttest intervention study. Total sample size was 530 in the pre-intervention phase, and then a subsample of 69 individuals was selected for the intervention and the post-intervention phases. Paired-sample t test was used to assess the difference between pretest and follow-up test results. A statistically significant improvement in knowledge and practice was achieved (P < 0.001). Poor knowledge and poor practice levels (scores <50%) were found to improve to satisfactory levels (scores ≥75%). Therefore, educational programs could be considered as an effective tool for changing health care staff practice in pharmaceutical waste management.

Implications: In health care facilities, pharmaceutical waste is generally discharged down the drain or sent to landfill. A lack of knowledge about the potential impacts of this type of waste may be a leading factor in improper disposal behavior. Following an educational program, statistically significant improvement in knowledge and practice of health care staff as regards to pharmaceutical waste management (PWM) was achieved. It is thus recommended that authorities implement training-of-trainers (TOT) programs to educate health care staff on PWM and organize refreshment workshops regularly.  相似文献   


13.
Abstract

More stringent controls on the quality of wastewater discharges have given rise to increasing volumes of sewage sludge for disposal, principally to land, using either land-spreading or sludge-to-landfill operations. Current sludge-to-landfill methods generally involve mixing the concentrated sludge with other solid waste in municipal landfills. However, stricter waste disposal legislation and higher landfill taxes are forcing the water industry to look for more efficient disposal strategies. Landfill operators are also increasingly reluctant to accept sludge material in the slurry state because of construction difficulties and the potential for instability of the landfill slopes. The engineering and drying properties of a municipal sewage sludge are presented and applied, in particular, to the design, construction, and performance of sewage sludge monofills. Sludge handling and landfill construction are most effectively conducted within the water content range of 85% water content, the optimum water content for standard proctor compaction, and 95% water content, the sticky limit of the sludge material. Standard proctor compaction of the sludge within this water content range also achieves the maximum dry density of ~0.56 tonne/m3, which maximizes the storage capacity and, hence, the operational life of the landfill site. Undrained shear strength-water content data (pertinent to the stability of the landfill body during construction) and effective stress-strength parameters, which take into account the landfill age and the effects of ongoing sludge digestion, are presented. Landfill subsidence, which occurs principally because of creep and decomposition of the solid organic particles, is significant and continues indefinitely but at progressively slower rates.  相似文献   

14.
A performance-based method for evaluating methane (CH4) oxidation as the best available control technology (BACT) for passive management of landfill gas (LFG) was applied at a municipal solid waste (MSW) landfill in central Washington, USA, to predict when conditions for functional stability with respect to LFG management would be expected. The permitted final cover design at the subject landfill is an all-soil evapotranspirative (ET) cover system. Using a model, a correlation between CH4 loading flux and oxidation was developed for the specific ET cover design. Under Washington’s regulations, a MSW landfill is functionally stable when it does not present a threat to human health or the environment (HHE) at the relevant point of exposure (POE), which was conservatively established as the cover surface. Approaches for modeling LFG migration and CH4 oxidation are discussed, along with comparisons between CH4 oxidation and biodegradation of non-CH4 organic compounds (NMOCs). The modeled oxidation capacity of the ET cover design is 15 g/m2/day under average climatic conditions at the site, with 100% oxidation expected on an annual average basis for fluxes up to 8 g/m2/day. This translates to a sitewide CH4 generation rate of about 260 m3/hr, which represents the functional stability target for allowing transition to cover oxidation as the BACT (subject to completion of a confirmation monitoring program). It is recognized that less than 100% oxidation might occur periodically if climate and/or cover conditions do not precisely match the model, but that residual emissions during such events would be de minimis in comparison with published limit values. Accordingly, it is also noted that nonzero net emissions may not represent a threat to HHE at a POE (i.e., a target flux between 8 and 15 g/m2/day might be appropriate for functional stability) depending on the site reuse plan and distance to potential receptors.

Implications: This study provides a scientifically defensible method for estimating when methane oxidation in landfill cover soils may represent the best available control technology for residual landfill gas (LFG) emissions. This should help operators and regulators agree on the process of safely eliminating active LFG controls in favor of passive control measures once LFG generation exhibits asymptotic trend behavior below the oxidation capacity of the soil. It also helps illustrate the potential benefits of evolving landfill designs to include all-soil vegetated evapotranspirative (ET) covers that meet sustainability objectives as well as regulatory performance objectives for infiltration control.  相似文献   


15.
This study presents the field investigations into the effects of cover soils and leachate subsurface irrigation on N2O emissions from municipal solid waste landfills. Landfill Site A and Site B, covered with carefully chosen infertile soils, were selected to monitor their diurnal and seasonal variations of N2O emissions. The annual average N2O flux was 469 ± 796 μg N2O-N m−2 h−1 in Site B with leachate subsurface irrigation, three times that of Site A without leachate irrigation. When an additional soil containing lower contents of carbon and nitrogen was introduced to cover part of Site B, its N2O fluxes decreased by 1-2 orders of magnitude compared with the left area of Site B. This suggested that carefully selected cover soils could substantially reduce N2O emissions even under leachate subsurface irrigation. Statistical analysis proved that the availabilities of soil moisture and mineralized nitrogen were the key parameters controlling landfill N2O emissions.  相似文献   

16.
Abstract

Synthetic polymers reach municipal landfills as components of products such as waste household paints, packaging films, storage containers, carpet fibers, and absorbent sanitary products. Some polymers in consumer products that reach landfills are designed to photodegrade or biodegrade. This article examines the significance of degradable polymers in management of solid waste in municipal landfills. Most landfills are not designed to photodegrade or biodegrade solid waste. Landfill disposal of stable polymers such as polyacrylics and polyethylenes is not associated with significant polymer degradation or mobility. Stability to photodegradation and biodegradation is an advantage when municipal landfills are used for disposal of polymer products as solid waste. Use of landfill disposal can be a responsible means to manage polymer waste and can be part of an overall waste management plan which includes source reduction, recycling, reuse, composting, and waste-to-energy incineration.  相似文献   

17.
Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb.

Implications: Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling activities, inadequate management of nonindustrial hazardous waste, and inadequate landfill disposal. Many cities in Eastern Europe and Zagreb as well are facing serious problems in managing municipal wastes due to the existing solid waste management system that is found to be highly inefficient. The proposed scenario for city of Zagreb in the paper is an innovative upgrading of municipal waste management based on the waste management hierarchy and circular economy approach.  相似文献   


18.
The Baltic Sea Region has a large number of landfills that need remediation after care routines and control, in order to avoid future emissions to the environment and to fulfil the demands in the EU Waste Council Directive on the landfill of waste. Based on the Måsalycke test screening, an excavation of whole or of parts of the landfill can be seen as a potential measure for some of the old landfills. The material excavated in the test was screened into the fractions: < 18 mm, 182-50 mm and > 50 mm. The coarsest fraction (> 50 mm) contained 50% wood and paper. The medium-sized fraction (18–50 mm) contained stones and indefinable soil-like material, while the fine fraction contained peat-like material with some other small waste components. The spectral analysis of heavy metals indicated only high concentrations of zinc and there was no significant difference between the fine and the medium-sized fractions. The medium sized and the unsorted fraction was moisturized and refilled into the pit. The methane content in the landfill gas from the pit was 50–57% in the sorted material with a flow of 8–17 l/min and 38–57% in the unsorted fraction with a flow of 2–13 l/min during the first 1.5 year. The Måsalycke landfill is in the methanogenic phase and leachate concentrations are normal. Landfill mining can be used to prolong the landfill lifetime and/or used as a tool for remedial actions in contaminated sites.  相似文献   

19.
Most of the landfills in developing countries do not have any liner at the base, or a drainage layer or a proper top cover, which results in the potential problem of groundwater/surface water contamination due to the leachate. Hence, to decide whether the leachate is to be collected and treated, or may be allowed to discharge into the adjoining soil or public sewer or surface waterbody, it is essential to have an estimate of the amount of leachate and, more importantly, the composition and strength of the leachate and variation of leachate contaminants with time as the landfill site develops. In this paper, the experimental work carried out at one of the landfills in New Delhi, India, to ascertain the composition of leachate, and its effect on the groundwater in the existing situation is presented. The variation in the leachate composition with the age of deposition of solid waste has been studied. The study indicates that the leachate composition varies considerably with the age of deposition of the waste. It may be worthwhile to use different methods for the treatment of leachate from different parts of the landfill, if collected separately. It has also been concluded that since leachate contains high concentrations of organic and inorganic constituents, including heavy metals, liners must be used at the landfills. The presence of bore wells at landfill sites to draw groundwater threatens to contaminate the groundwater, and immediate remediation steps should be taken at all landfill sites that have groundwater bore wells.  相似文献   

20.
Abstract

To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号