首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last few decades, electrostatic precipitators (ESPs) have emerged as effective air pollution control devices for treating coal-fired power plant exhausts. Among the components of the ESP, the discharge electrodes are extremely important in determining the collection efficiency of the ESP. Typically, in wet ESPs, the discharge electrodes used must be made of corrosion-resistant alloys, which makes them extremely expensive and heavy. Hybrid composite discharge electrodes have the potential to be lightweight and corrosion-resistant substitute for traditional metal alloy electrodes used in wet ESPs. In this experimental study, a novel hybrid composite electrode (recently patented at Ohio University) is presented as a substitute for traditional metal electrodes in wet ESPs. The samples of hybrid electrodes were fabricated by using carbon fiber composites, combined with metal mesh, in the shape of a long and thin tape. The electrode’s electrical response was evaluated in open atmospheric conditions, while connected to a transformer-rectifier unit to generate a corona current at voltages exceeding 50 kV. Results of these hybrid electrodes were compared with traditional metal electrodes. The hybrid composite discharge electrode produced a uniform corona at comparable power levels to that of metal electrodes, with additional advantages of being compact, lightweight, and highly corrosion resistant. In addition, hybrid composite electrodes exhibited lower corona onset voltage as compared with metal electrodes. The preliminary experimental data are encouraging and show significant potential for this new inexpensive hybrid electrode to replace metal electrodes in wet ESPs, providing comparable (and in some cases exceeding) collection efficiencies with lower ozone generation.

Implications: The newly invented hybrid composite electrode (HCE) performance was evaluated through experimentation with conventional metal electrodes. The HCE performance was comparable to the metal electrodes. The HCE also exhibited uniform corona fields and steady power while maintaining similar and in some cases superior electrical performance as compared with metal electrodes and thus shows a significant potential to substitute metal electrodes in wet ESP systems.  相似文献   


2.
Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms’ individual contributions.

Implications: The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.  相似文献   


3.
A self-flushing wet electrostatic precipitator was developed to investigate the removal performance for fine particles. Flexible material (polypropylene, 840A) and carbon steel in the form of a spiked band were adopted as the collection plate and discharge electrode, respectively. The particle concentration, morphology, and trace-element content were measured by electric low-pressure impactor, scanning electron microscope, and energy-dispersive x-ray spectroscopy, respectively, before and after the electrostatic precipitator. With increasing gas velocity, the collection efficiency of fine particles (up to 0.8 μm in diameter) increased, while it decreased for particles with diameters larger than 0.8 μm. Increasing the dust inlet concentration increased the collection efficiency up to a point, from which it then declined gradually with further increases in the inlet concentration. The particulate matter after the wet electrostatic precipitator showed different degrees of agglomeration. The collection efficiency of trace elements within PM10 was less than that of the PM10 itself. Notably, the water consumption in the current setup was significantly lower than for other treatment processes of comparable collection efficiencies.

Implications: Wet electrostatic precipitators, as fine filtration equipment, were generally applicable to coal-fired plants to reduce PM2.5 emissions in China. However, high energy consumption and unstable operation, such as water usage and spray washing directly in the electric field, seriously restricted the further development. The utilization of self-flushing wet electrostatic precipitator can solve these problems to some extent.  相似文献   


4.
ABSTRACT

Wet electrostatic precipitators (WESPs) are modern-era pollution control systems specifically designed to capture ultrafine particles as well as acid mist, highly resistive and sticky particles; however, this requires the use of expensive corrosion-resistant metal alloys. The work presented here is part of a continuing study at Ohio University aimed at reducing the cost of WESPs by using a novel combination of a polymer collector surfaces with a hybrid composite discharge electrode. In this study, a hybrid composite discharge electrode was tested, for the first time, inside a semi-pilot-scale experimental setup, with collection surfaces consists of a vertical array of strands. Particle laden gases were passed through this array of polymer ropes, which were kept wet by a small flow of water. The discharge electrodes were composite laminates of carbon fibers in a polymer matrix enclosing a metal mesh. The preliminary results showed that this new integrated system of composite discharge electrode and polymer collector surfaces can match or exceed the performance of a conventional metal alloy electrostatic precipitator (ESP) with metal discharge electrodes. There are additional advantages due to the system being compact, lightweight, and highly corrosion resistant.

Implications: This study focused on integrating and assessing performance of a novel hybrid composite electrode (HCE) inside semi-pilot novel cross-flow electrostatic precipitator at conditions typically observed in coal-fired power plant exhausts. The results were collected for particulate collection efficiencies and were compared with a rigid metal electrode. The HCE outperformed metal electrode by showing higher particulate collection efficiency. This result showcases substantial potential for these two new technologies (HCE and cross-flow system) as a substitute for conventional metal based wet ESPs.  相似文献   

5.
Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or water-based) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at FirstEnergy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with approximately 15% less collecting area.  相似文献   

6.
The concentrations of fine particles and selected gas pollutants in the flue gas entering the stack were measured under several common operation modes in an operating coal power plant producing electricity. Particle size distributions in a diameter range from 10 nm to 20 μm were measured by a scanning mobility particle sizer (SMPS), and the flue gas temperature and concentrations of CO2 and SO2 were monitored by a continuous emission monitoring system (CEMS). During the test campaign, five plant operating modes were studied: soot blowing, bypass of flue-gas desulfurization (FGD), reheat burner operating at 0% (turned off), 27%, and 42% (normal condition) of its full capacity. For wet and dry aerosols, the measured mode sizes were both around 40 nm, but remarkable differences were observed in the number concentrations (#/cm3, count per square centimeter). A prototype photoionizer enhanced electrostatic precipitator (ESP) showed improved removal efficiency of wet particles at voltages above +11.0 kV. Soot blowing and FGD bypass both increased the total particle number concentration in the flue gas. The temperature was slightly increased by the FGD bypass mode and varied significantly as the rating of reheat burner changed. The variations of CO2 and SO2 emissions showed correlations with the trend of total particle number concentration possibly due to the transitions between gas and particle phases. The results are useful in developing coal-fired power plant operation strategies to control fine particle emissions and developing amine-based CO2 capture technologies without operating and environmental concerns associated with volatile amine emissions.

Implications: The measurement of the fine particle size distributions in the exhaust gas under several common operating conditions of a coal-fired power plant revealed different response relations between aerosol number concentration and the operating condition. A photo-ionizer enhanced ESP was demonstrated to capture fine particles with higher efficiency compared to conventional ESPs, and the removal efficiency increased with the applied voltage. The characteristic information of aerosols and main gaseous pollutants in the exhaust gas is extremely important for developing and deploying CO2 scrubbers, whose amine emissions and operating effectiveness depends greatly on the upstream concentrations of fine particles, SO2, from the power plant.  相似文献   


7.
Electrostatic precipitation is considered as an effective technology for fine particle removal. A lab-scale wet electrostatic precipitator (ESP) with wire-to-plate configuration was developed to study particle migration and collection. The performance of the wet ESP was evaluated in terms of the corona discharge characteristics, total removal efficiency and fractional removal efficiency. The corona discharge characteristics and particle removal abilities of the wet ESP were investigated and compared with dry ESP. Particle removal efficiency was influenced by discharge electrode type, SO2 concentration, specific collection area (SCA) and particle/droplet interaction. Results showed that the particle removal efficiency of wet ESP was elevated to 97.86% from 93.75% of dry ESP. Three types of discharge electrodes were investigated. Higher particle removal efficiency and larger migration velocity could be obtained with fishbone electrode. Particle removal efficiency decreased by 2.87% when SO2 concentration increased from 0 ppm to 43 ppm as a result of the suppression of corona discharge and particle charging. The removal efficiency increased with higher SCA, but it changed by only 0.71% with the SCA increasing from 25.0 m2/(m3/s) to 32.5 m2/(m3/s). Meanwhile, the increasing of particle and droplet concentration was favorable to the particle aggregation and improved particle removal efficiency.

Implications: This work tends to study the particle migration and collection under spraying condition. The performance of a wet electrostatic precipitator (ESP) is evaluated in terms of the corona discharge characteristics, total particle removal efficiency, and fractional particle removal efficiency. The effects of water droplets on particle removal, especially on removal of particles with different sizes, is investigated. The optimization work was done to determine appropriate water consumption, discharge electrode type, and specific collection area, which can provide a basis for wet ESP design and application.  相似文献   


8.
This paper reports development and testing of a novel cross-flow wet electrostatic precipitator (WESP), recently patented at Ohio University, that utilizes vertical columns of permeable material in the form of polypropylene ropes placed in a cross-flow configuration within a flue gas stream. The cross-flow design has large surface area, which provides scrubbing action; therefore, it has the potential for removing multiple pollutants, including particulates, gases, vapors, and mists. In this new method, the ropes are kept wet by the liquid (water) introduced from the top of the cells running downward on the ropes by capillary action, making the permeable materials act as the ground electrode for capturing particles from the flue gas. Preliminary testing has shown an efficiency of well above 80% using two cells and three sets of discharge electrodes. Since the material of construction is primarily corrosion-resistant polymeric material, both weight and cost reductions are expected from this new design.

Implications: The newly invented cross-flow WESP exhibit particulate collection efficiency of well above 80% when introduced in particulate-laden exhaust flow. This value was obtained using a two cells and three discharge electrodes configuration. The electric field strength has a substantial effect on the collection efficiency. Also, the pressure drop test results indicate that there is a potential to increase the collection area, which, in turn, will increase the collection efficiency further.  相似文献   


9.
Electrospinning is a simple and versatile process to produce polymer nanofibers, which are useful for ultrafine particle filtration. In this study, a polyurethane filter with an average fiber diameter of 150–250 nm was prepared through the electrospinning process and its filtration characteristics were investigated. We found that the electrospun fiber diameter was highly dependent on the polyurethane concentration, electric field, and tip-to-collector distance. As the polyurethane concentration, electric field, and tip-to-collector distance under the same electric field increased, the fiber diameter increased. We also found that the produced filter media had a minimum collection efficiency at particles sizes from 80 to 100 nm, which implies an electrostatic attraction between the filter and the test particles. Furthermore, we observed that interception was a predominant collection mechanism at Peclet numbers higher than 10 in nanofiber filtration for ultrafine particles.

Implications:

A polyurethane nanofiber filter with excellent mechanical properties was prepared, and the effect of operating conditions on fiber morphology was examined. The filter fabricated by an electrospinning process is charged and has high filtration efficiency due to electrostatic force. Therefore, it can be a good alternative to control hazardous ultrafine particles.  相似文献   


10.
This study reports the development, construction, and initial testing of a novel vibrational precipitator (VP), patented at Ohio University in 2016, that uses vibrating metal cables with water running over them to capture particulate matter in an exhaust stream. Unlike traditional electrostatic precipitators relying on electric energy to capture particles, this new system uses the concept of vortex shedding to produce vibrations in vertical cables running perpendicular to an exhaust stream. Collisions between particles in the exhaust stream and these vibrating cables cause the particles to land onto a thin film of flowing water around the cables, which carries the particles downward for collection and removal. Initial tests with air containing particulates of 3 micron average particle size show capture efficiencies up to 54% using U.S. Environmental Protection Agency (EPA) Method 5 to measure the particulate concentrations at the upstream and downstream of a VP comprising 8 cells. These results show that this system, without consuming any electric energy, has a significant potential to be a simple and cost-effective way to treat particle-laden exhaust gases.

Implications: In this work, for the first time, a novel precipitator is investigated that captures particles without using any particle charging and (hence) any electricity. The capture mechanism is governed by vibrations of collection electrodes, which are vertical steel cables wetted through continuous flow of water. Without any discharge electrodes, electrode suspension mechanism, and ability of the system to be installed in existing ducts, the novel precipitator becomes a simple chamber housing containing multiple collection electrode cells. The preliminary results show that this new technology can achieve net particulate matter capture efficiency of 54%. This paves a pathway forward for reducing capital and operating cost of air pollution control systems.  相似文献   


11.
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers.

Implications: This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.  相似文献   


12.
The size distribution and chemical components of a fine fraction (<2.5 μm) of road dust collected at urban sites in Korea (Gwangju) and Mongolia (Ulaanbaatar) where distinct urban characteristics exist were measured. A clear bimodal size distribution was observed for the resuspended fine road dust at the urban sites in Korea. The first mode peaked at 100–110 nm, and the second peak was observed at 435–570 nm. Ultrafine mode (~30 nm) was found for the fine road dust at the Mongolia site, which was significantly affected by residential coal/biomass burning. The contribution of the water-soluble ions to the fine road dust was higher at the sites in Mongolia (15.8–16.8%) than at those in Korea (1.2–4.8%). Sulfate and chloride were the most dominant ionic species for the fine road dust in Mongolia. As (arsenic) was also much higher for the Mongolian road dust than the others. The sulfate, chloride, and As mainly come from coal burning activity, suggesting that coal and biomass combustion in Mongolia during the heating season should affect the size and chemical components of the fine road dust. Cu (copper) and Zn (zinc), carbonaceous particles (organic carbon [OC] and elemental carbon [EC]) increased at sites in Korea, suggesting that the fine road dust at these sites was significantly affected by the high volume of traffic (engine emission and brake/tire wear). Our results suggest that chemical profiles for road dust specific to certain sites should be applied to more accurately apportion road dust source contributing to the ambient particulate matter.

Implications: Size and chemical characteristics of fine road dust at sites having distinct urban characteristics were examined. Residential coal and biomass burning and traffic affected physiochemical properties of the fine road dust. Different road dust profiles at different sites should be needed to determine the ambient PM2.5 sources more accurately.  相似文献   


13.
With increasing attention on sulfuric acid emission, investigations on the removal characteristics of sulfuric acid aerosols by the limestone gypsum wet flue gas desulfurization (WFGD) system and the wet electrostatic precipitator (WESP) were carried out in two coal-fired power plants, and the effects of the WFGD scrubber type and the flue gas characteristics were discussed. The results showed that it was necessary to install the WESP device after desulfurization, as the WFGD system was inefficient to remove sulfuric acid aerosols from the flue gas. The removal efficiency of sulfuric acid aerosols in the WFGD system with double scrubbers ranged from 50% to 65%, which was higher than that with a single scrubber, ranging from 30% to 40%. Furthermore, the removal efficiency of WESP on the sulfuric acid aerosols was from 47.9% to 52.4%. With increased concentrations of SO3 and particles in the flue gas, the removal efficiencies of the WFGD and the WESP on the sulfuric acid aerosols were increased.

Implications: Investigations on removal of sulfuric acid aerosols by the WFGD and the WESP in the power plants were aimed at the control of sulfuric acid emission. The results showed that the improvement of the WFGD system was beneficial for the reduction of sulfuric acid emission, while the WESP system was essential to control the final sulfuric acid aerosol concentration.  相似文献   


14.
The association between particulate pollution and cardiovascular morbidity and mortality is well established. While the cardiovascular effects of nationally regulated criteria pollutants (e.g., fine particulate matter [PM2.5] and nitrogen dioxide) have been well documented, there are fewer studies on particulate pollutants that are more specific for traffic, such as black carbon (BC) and particle number (PN). In this paper, we synthesized studies conducted in the Greater Boston Area on cardiovascular health effects of traffic exposure, specifically defined by BC or PN exposure or proximity to major roadways. Large cohort studies demonstrate that exposure to traffic-related particles adversely affect cardiac autonomic function, increase systemic cytokine-mediated inflammation and pro-thrombotic activity, and elevate the risk of hypertension and ischemic stroke. Key patterns emerged when directly comparing studies with overlapping exposure metrics and population cohorts. Most notably, cardiovascular risk estimates of PN and BC exposures were larger in magnitude or more often statistically significant compared to those of PM2.5 exposures. Across multiple exposure metrics (e.g., short-term vs. long-term; observed vs. modeled) and different population cohorts (e.g., elderly, individuals with co-morbidities, young healthy individuals), there is compelling evidence that BC and PN represent traffic-related particles that are especially harmful to cardiovascular health. Further research is needed to validate these findings in other geographic locations, characterize exposure errors associated with using monitored and modeled traffic pollutant levels, and elucidate pathophysiological mechanisms underlying the cardiovascular effects of traffic-related particulate pollutants.

Implications: Traffic emissions are an important source of particles harmful to cardiovascular health. Traffic-related particles, specifically BC and PN, adversely affect cardiac autonomic function, increase systemic inflammation and thrombotic activity, elevate BP, and increase the risk of ischemic stroke. There is evidence that BC and PN are associated with greater cardiovascular risk compared to PM2.5. Further research is needed to elucidate other health effects of traffic-related particles and assess the feasibility of regulating BC and PN or their regional and local sources.  相似文献   


15.
Bushfires, prescribed burns, and residential wood burning are significant sources of fine particles (aerodynamic diameter <2.5 μm; PM2.5) affecting the health and well-being of many communities. Despite the lack of evidence, a common public health recommendation is to remain indoors, assuming that the home provides a protective barrier against ambient PM2.5. The study aimed to assess to what extent houses provide protection against peak concentrations of outdoor PM2.5 and whether remaining indoors is an effective way of reducing exposure to PM2.5. The effectiveness of this strategy was evaluated by conducting simultaneous week-long indoor and outdoor measurements of PM2.5 at 21 residences in regional areas of Victoria, Australia. During smoke plume events, remaining indoors protected residents from peak outdoor PM2.5 concentrations, but the level of protection was highly variable, ranging from 12% to 76%. Housing stock (e.g., age of the house) and ventilation (e.g., having windows/doors open or closed) played a significant role in the infiltration of outdoor PM2.5 indoors. The results also showed that leaving windows and doors closed once the smoke plume abates trapped PM2.5 indoors and increased indoor exposure to PM2.5. Furthermore, for approximately 50% of households, indoor sources such as cooking activities, smoking, and burning candles or incense contributed significantly to indoor PM2.5.

Implications: Smoke from biomass burning sources can significantly impact on communities. Remaining indoors with windows and doors closed is a common recommendation by health authorities to minimize exposures to peak concentrations of fine particles during smoke plume events. Findings from this study have shown that the protection from fine particles in biomass burning smoke is highly variable among houses, with information on housing age and ventilation status providing an approximate assessment on the protection of a house. Leaving windows closed once a smoke plume abates traps particles indoors and increases exposures.  相似文献   


16.
A number of literatures have documented adverse health effects of exposure to fine particulate matter (PM2.5), and secondary sulfate aerosol and black carbon may contribute to health impacts of PM2.5 exposure. We designed an exposure system to generate sulfate and traffic soot particles, and assessed the feasibility of using it for human exposure assessment in a pilot human exposure study. In the designed exposure system, average mass concentrations of generated sulfate and soot particles were 74.19μg/m3 and 11.54μg/m3 in the chamber and did not vary significantly during two-hour human exposure sessions. The size ranges of generated sulfate were largely between 20 to 200 nm, whereas those of generated soot particles were in the size ranges of 50 to 200nm. Following two-hour exposure to generated sulfate and soot particles, we observed significant increases in fractional exhaled NO (FeNO) in young and health subjects. Building on established human exposure system and health response follow-up methods, future full-scale studies focusing on the effects of mixed particulates and individual PM2.5 components would provide data in understanding the underpinning cardio-respiratory outcomes in relation to air pollution mixture exposure.

Implications: Controlled exposure is a useful design to measure the biological responses repeatedly following particulate exposures of target components and set exposure at target levels of health concerns. Our study provides rational and establishes method for future full-scale studies to focus on examining the effects of mixed particulates and individual PM2.5 components.  相似文献   


17.
Emission measurements of black carbon (BC) mass were conducted on a T63 turboshaft engine, operated at idle and cruise power with conventional and alternative fuels, using an Artium LII-300 laser-induced incandescence analyzer (LII) and AVL model 483 micro soot sensor (MSS) photoacoustic instrument using the manufacturer’s calibration for both instruments. These measurements were compared with elemental carbon (EC) determined by manual and semicontinuous thermal-optical transmission analyses according to National Institute for Occupational Safety and Health (NIOSH) method 5040 as the reference method. The results indicate that both the LII and MSS instruments show good linear correlation with EC for the two fuels and two engine power conditions evaluated. The LII measurements were observed to be biased high (27–49%) and the MSS measurements were biased low (24–35%) relative to EC. The agreement between the instruments and the reference method was substantially improved by applying a calibration of the instruments against a common BC aerosol source. Test data also suggest that the two instruments show some sensitivity to particle size (or properties related to size), specifically for particles with a geometric mean diameter (GMD) <30 nm. This sensitivity is problematic, since new engines or certain combustion conditions in current engines will produce smaller particles compared with the T63 model tested in this study. Further assessments of instrument performance for particles within this size range are therefore warranted.

Implications: Accurate black carbon emission measurements are needed to certify new and in-production commercial aircraft engines. Both the Artium LII-300 and AVL 483 micro soot sensor are currently approved by the International Civil Aviation Organization for this purpose. This study compares the two instruments against elemental carbon (EC) using NIOSH method 5040 as the reference using a T63 turboshaft engine. The results indicate that both instruments correlate reasonably well with EC, and the correlation substantially improved when applying a calibration against a common aerosol source. Sensitivity to particle size may be an issue for both instruments.  相似文献   


18.
Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland (“Reykjavik haze”), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events.

Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured.

Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

Implications: Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and provides a unique perspective of the dust aerosol production from natural sources in the sub-Arctic Iceland. The amounts are staggering, and with this paper, it is clear that Icelandic dust sources need to be considered among major global dust sources. This paper presents the dust events directly affecting the air quality in the Arctic region.  相似文献   


19.
The disposal of industrial brine sludge waste (IBSW) in chlor-alkali plants can be avoided by utilization of IBSW as a sorbent in wet flue gas desulfurization (FGD). The shrinking core model was used to determine the dissolution kinetics of IBSW, which is a vital step in wet FGD. The effects of solid-to-liquid ratio (m/v), temperature, pH, particle size, and stirring speed on the conversion and dissolution rate constant are determined. The conversion and dissolution rate constant decreases as the pH, particle size, and solid-to-liquid ratio are increased and increases as the temperature, concentration of acid, and stirring speed are increased. The sorbents before and after dissolution were characterized using x-ray fluorescence (XRF), x-ray diffraction (XRD), and scanning electron microscopy (SEM). An activation energy of 7.195 kJ/mol was obtained and the product layer diffusion model was found to be the rate-controlling step.

Implications: The use of industrial brine sludge waste as an alternative sorbent in wet flue gas desulfurization can reduce the amounts of industrial wastes disposed of in landfills. This study has proved that the sorbent can contain up to 91% calcium carbonate and trace amounts of sulfate, magnesium, and so on. This can be used as new sorbent to reduce the amount of sulfur dioxide in the atmosphere and the by-product gypsum can be used in construction, as a plaster ingredient, as a fertilizer, and for soil conditioning. Therefore, the sorbent has both economic and environmental benefits.  相似文献   


20.
ABSTRACT

A novel two-stage wet electrostatic precipitator (ESP) has been developed using a carbon brush pre-charger and collection plates with a thin water film. The electrical and particle collection performance was evaluated for submicrometer particles smaller than 0.01~0.5 μm in diameter by varying the voltages applied to the pre-charger and collection plates as well as the polarity of the voltage. The collection efficiency was compared with that calculated by the theoretical models. The long-term performances of the ESP with and without water films were also compared in tests using Japanese Industrial Standards dust. The experimental results show that the carbon brush pre-charger of the two-stage wet ESP had approximately 10% particle capture, while producing ozone concentrations of less than 30 ppb. The produced amounts of ozone are significantly lower than the current limits set by international agencies. The ESP also achieved a high collection rate performance, averaging 90% for ultrafine particles, as based on the particle number concentration at an average velocity of 1 m/sec corresponding to a residence time of 0.17 sec. Higher particle collection efficiency for the ESP can be achieved by increasing the voltages applied to the pre-charger and the collection plates. The decreased collection efficiency that occurred during dust loading without water films was completely avoided by forming a thin water film on the collection plates at a water flow rate of 6.5 L/min/m2 Zukeran, A., Ikeda, Y., Ehara, Y., Matsuyama, M., Ito, T., Takahashi, T., Kawakami, H. and Takamatsu, T. 1999. Two-Stage-Type Electrostatic Precipitator Re-entrainment Phenomena under Diesel Flue Gases. IEEE. Trans. Ind. Appl, 35: 346351. [Crossref], [Web of Science ®] [Google Scholar].

IMPLICATIONS Current two-stage electrostatic precipitators (ESPs) have several technical problems such as a drop in collection efficiencies by small-particle re-entrainment during rapping and corrosion of metallic electrodes of the ESPs by corrosive gases. This paper evaluates a novel two-stage ESP that uses a nonmetallic pre-charger and water film collection plates to avoid the above mentioned problems of other ESPs. This ESP can be used not only for industrial applications but also for residential purposes because it has a high removal performance for fine particles with low ozone generation and maintains its efficiency due to the continuous cleaning of the collection plates with water film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号