共查询到18条相似文献,搜索用时 109 毫秒
1.
土壤理化性质对污染场地环境风险不确定性的影响 总被引:2,自引:1,他引:2
以某化工污染场地中挥发性有机物苯的环境风险评价为例,研究了土壤有机质含量、土壤含水率、土壤容重等理化性质对风险评价结果的影响.在土壤污染物苯浓度不变的前提下,土壤有机质含量、土壤含水率和土壤容重在场地条件下随机取值的变异范围分别为0.31%~2.31%、0.12~0.25和1.25~1.75 g/cm3.10 000次蒙特卡罗模拟结果表明,在95%置信水平下,苯的总致癌风险(概率值)在1.45×10-5~2.74×10-5之间.在该场地条件下,土壤有机质含量是影响苯风险不确定性的最主要因素,其对风险评价结果不确定性的贡献率高达90.2%;土壤含水率和土壤容重的贡献率分别为5.6%和4.2%.因此,在土壤污染健康风险评价过程中,应对理化参数进行敏感性分析,对评价结果影响较大的关键参数取值需慎重. 相似文献
2.
3.
4.
环境风险评价的不确定性问题处理方法进展 总被引:1,自引:0,他引:1
环境风险分析是环境管理和决策的基础。由于环境数据相对比较模糊并且不够精确,用这类数据进行的相关分析和研究必定存在着偏差。从本质上说,风险分析的不确定性有两个原因,随机性和不完全性。目前解决不确定性的方法主要基于概率理论和模糊集理论。概率理论使用概率密度函数来描述环境参数中的随机变量。模糊集理论使用隶属函数和If——Then语句来表述环境问题的模糊性。目前相关研究主要集中于两种方法的结合。本文就各方法在不同环境介质风险评价中的应用进行了综述分析。 相似文献
5.
6.
环境风险评价中的不确定性研究 总被引:1,自引:0,他引:1
在环境风险评价中经常会遇见不确定性问题,以无水氢氟酸储罐泄漏为例,分别研究了在计算事故发生概率、确定泄漏源、应用扩散模式、评价事故损伤结果等工作中遇到的不确定性问题。并以此分析了造成这些不确定性因素的原因,同时提出相应的解决方法,最后介绍了环境风险评价中不确定性问题的研究现状和方向。 相似文献
7.
8.
基于Monte Carlo方法的污染场地风险评价及不确定性研究 总被引:1,自引:1,他引:1
风险评价结果的不确定性直接影响风险管理者的管理和决策,为定量研究污染场地评价过程的不确定性,在系统分析污染场地危害产生过程的基础上,构建了污染场地暴露过程评价的概念模型;提出用概率分布函数表征场地污染参数的不确定性,采用基于过程的污染物运移数值模拟模型以减小模型不确定性的影响,用Monte Carlo方法评估参数不确定性对暴露浓度不确定性的贡献,进而形成暴露点污染物浓度的概率分布函数.在此基础上,基于剂量-效应模型,分别采用暴露点浓度的5%、50%和95%置信区间上限值表示乐观情况下,正常情况下以及最不利情况下的暴露浓度,计算敏感人群的健康风险.研究选择国内西南地区某铬渣污染场地进行案例分析,结果表明,在最乐观情况下六价铬和总铬的非致癌危害商分别是8.98和1.02,正常情况下分别是30.57和2.72;最不利情况下分别是77.95和7.11.研究结果表明该方法能较好的表征各参数不确定性影响下的最终风险,为污染场地的修复和后续管理提供决策支持. 相似文献
9.
10.
11.
层次化健康风险评估方法在苯污染场地的应用及效益评估 总被引:5,自引:2,他引:5
以北京某大型苯污染场地为例,详细介绍了如何开展层次化健康风险评估.同时,结合场地污染调查结果,比较了不同层次风险评价确定的土壤苯修复目标、修复量及修复成本的差异.结果表明,在1×10-6可接受致癌风险水平下,该场地第二层次风险评价确定的0~1.5 m深度范围内土壤苯修复目标为0.26 mg·kg-1、1.5~10 m范围内土壤苯修复目标为0.15mg·kg-1,相应的土壤修复量约为292 759 m3,修复成本约2.06亿元.但是,基于该场地苯污染区域土壤气中苯浓度进行的第三层次风险评价确定的0~1.5 m深度范围内土壤苯修复目标为2.6 mg·kg-1、1.5~10 m范围内土壤苯修复目标为1.5mg·kg-1,相应的土壤修复量约为153 222 m3,减少139 537 m3,修复成本为1.49亿元,减少了5 700万元,修复成本的降低远多于因开展第三层次风险评价所付出的约10万元的成本.因此,对于类似大型VOCs污染场地,开采第三层次健康风险评价能够节省大量修复成本、带来巨大的经济效益. 相似文献
12.
基于土壤气中实测苯浓度的健康风险评价 总被引:3,自引:3,他引:3
以室外呼吸暴露途径为例,推导了该途径下基于土壤气中ρ(VOCs)的风险计算模型,并在北京某焦化厂苯污染区域进行应用. 结果显示,相同暴露途径下,与采用ASTM模型的理论计算值相比,基于现场土壤气中实测的ρ(苯)低至少1个数量级,基于实测土壤气中ρ(苯)所得风险值低1~2个数量级. 因此,建议对于污染范围较广、污染情况较复杂的大型VOCs污染场地,当采用ASTM模型计算的风险过于保守时,可遵循场地风险评价中分层次风险评价的思路,采用污染区域实测土壤气中ρ(VOCs)进行风险计算,确保风险计算结果更为客观、划定的修复范围更合理以节省不必要的修复资金. 相似文献
13.
突发性环境污染事件由于具有污染物浓度高、不易察觉、常规处理难度大等特点,因此环境健康风险较高. 以饮用水受到突发性苯污染为例,模拟研究了苯随着自来水进入居民家庭后,分别通过饮用、皮肤接触和呼吸等暴露途径对人体造成的健康风险. 结果表明,3种暴露途径下,皮肤接触暴露的健康风险最高,当自来水中ρ(苯)为300.00和10.00 μg/L时,健康风险分别为4.09×10-3和1.19×10-4. 饮用暴露的健康风险最低,当自来水中ρ(苯)为300.00和10.00 μg/L时,健康风险最大值为4.61×10-6,最小值趋近于0,这主要是由于苯极易挥发,而我国居民饮用煮沸后的开水,开水中苯的残留量较低. 经过3种暴露途径进入人体的苯的日均综合暴露健康风险最大值为4.33×10-3,最小值为1.26×10-4,超过了US EPA(美国国家环境保护局)人体健康风险建议最大值(1×10-4). 相似文献
14.
污染场地风险评估是污染土地再开发过程中的重要环节。由于污染物的属性及来源不同,污染物在土壤中的残留具有明显的分层特点。以某复合型化工污染场地土壤修复为例,采用美国GSI公司开发的RBCA模型,对该污染场地进行分地层健康风险评估,取得了主要污染物在不同地层中的风险状况。结果表明,该污染场地即存在致癌风险也存在非致癌风险,但以有机致癌风险为主。根据该风险评估结果,能为后续的污染场地修复制定有针对性的修复方案,增强修复效果,节约修复费用。 相似文献
15.
为分析车内苯系物污染对不同性别驾乘人员的致癌风险和非致癌风险,对65辆轿车内空气中ρ(苯)、ρ(甲苯)、ρ(乙苯)和ρ(二甲苯)进行评价;提出车内苯的基本致癌风险浓度与危险致癌风险浓度概念及其计算公式,并与国内外相关标准中苯系物浓度标准限值进行对比分析. 结果表明:65辆轿车内空气中苯系物Hfz(综合非致癌指数)的最大值为0.44,低于US EPA(美国国家环境保护局)规定的非致癌风险基本值(1),对乘客与司机均不存在非致癌风险;但苯对司机Hza(致癌指数)的平均值为129.3×10-6,致癌风险较高;苯对男性乘客、女性乘客、男性司机与女性司机的Cwx(危险致癌风险浓度)分别为450.0、470.0、67.5和70.4 μg/m3. GB/T 27630—2011《乘用车内空气质量评价指南》中苯浓度标准限值对司机Hza的平均值为1.59×10-4,大于US EPA规定的苯致癌风险危险值(1×10-4),构成致癌危害;苯系物浓度标准限值对司机Hfz的平均值为1.15,构成非致癌危害. 轿车内空气中ρ(苯)、ρ(甲苯)、ρ(乙苯)和ρ(二甲苯)的合理限值分别为0.068、1.000、1.350和1.350 mg/m3. 相似文献
16.
桂时乔 《环境与可持续发展》2015,(4)
某化工生产车间历史上发生甲苯泄漏,造成了现场的土壤和地下水污染。采用基于人体健康的风险评估以分析污染对敏感受体的风险,并确定污染物修复目标值和修复范围。结果表明,风险评估过程模型计算复杂,涉及参数众多,运用可信的风险评估商业软件可以快速模拟各种模式并进行计算,大大提高工作效率。 相似文献
17.
基于不确定性分析的垃圾焚烧烟气中重金属的土壤沉积及生态风险评估 总被引:1,自引:1,他引:1
采用CALPUFF模式模拟某城市垃圾焚烧烟气中重金属Pb和Cd的地面大气浓度,并借助土壤浓度模型以Monte Carlo模拟不确定性处理方法估算重金属经沉降在土壤中的累积,最后利用潜在生态危害指数法对重金属在土壤中的长期累积量进行生态风险评估.结果表明,Pb和Cd的大气浓度最大值分别为5.59×10-3μg·m-3和5.57×10-4μg·m-3,土壤浓度增量中值最大分别为2.26 mg·kg-1和0.21 mg·kg-1;高生态风险区集中在焚烧炉附近的下风向地区,生态风险主要由Cd贡献,Pb基本无污染风险;城市最大污染点达较高生态危害水平概率为55.30%,农村最大污染点达中等生态危害水平概率达72.92%.此外,对土壤浓度模型的参数进行敏感性分析表明,城、乡区域模拟结果分别对土壤混合厚度和干沉降速率敏感性最强. 相似文献
18.
VOCs污染场地挖掘过程的环境健康风险评价 总被引:1,自引:0,他引:1
开展了在典型污染场地修复过程中VOCs散逸浓度检测实验,并且建立了3条暴露途径对修复过程进行健康风险评价.结果表明,单污染物多途径累计非致癌指数最高的是四氯化碳,高达8.86E+01,其对综合非致癌影响贡献率为74.45%.多污染物质同一暴露途径危害指数最高的是呼吸暴露途径:1.01E+02,占综合危害指数的84.87%,非致癌综合危害指数为1.19E+02.单污染物多途径累计致癌指数最高的是1,2-二氯乙烷:3.08E-02,其对综合致癌影响贡献率为69.53%.多污染物质同一暴露途径危害指数最高的是呼吸暴露途径:3.96E-02,占综合致癌指数的89.39%,总致癌危害指数达到4.43E-02. 相似文献