首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Photosynthesis and transpiration rates of wheat leaves (Triticum aestivum L.) were measured at 30 min intervals under Mediterranean field conditions, using Photosynthesis Monitor system (PM-48M). The dynamics of net photosynthetic rate (P(N)), transpiration rate (E(T)), water use efficiency (WUE), light use efficiency (LUE), stomatal conductance (g(s)), photosynthetically active radiation (PAR), air temperature (T), relative humidity (RH), and atmospheric CO2 concentration (Catm) were quantified at five rainfed wheat sites with the same stages of development (midflowering) along south-to-north and east-to-west transects for eight days in April. Diurnal P(N) (3.6 to 6.6 micromol m(-2) s(-1)), PAR (392 to 564 micromol m2 sec(-1)), LUE (0.006 to 0.015) and WUE (0.0001 to 0.011) did not vary significantly across all five wheat sites (p > 0.05). P(N) and E(T) were strongly coupled and highly correlated with PAR (p < 0.001). Best multiple linear regression (MLR) models accounted for 92% of variations in P(N) as a function of PAR and E(T), and 90% in E(T) as a function of PAR and RH (p < 0.001). P(N) exhibited a peak at mid-morning, and a photosynthetic midday depression under the limiting effects of high evaporative demand. Diurnal variations in WUE and LUE showed a bimodal behavior with the maximum values in early morning and late afternoon. As the impacts of global climate change become increasingly felt, continuous measurements of climate-crop-soil-managementinteractions under natural conditions play a pivotal role not only in exploring changes in ecophysiological properties of strategic crops for food security such as wheat but also in devising preventive and mitigative management practices to ensure sustained agricultural productivity.  相似文献   

2.
In order to evaluate their responses to drought, we determined the photosynthetic activity water potential, stomatal conductance, transpiration, water use efficiency photosynthetic photon flux density and leaf temperature of Paulownia imperialis, P. fortunei and P. elongata in three different soil moisture conditions in the field. Our results showed that P. imperialis had greater photosynthesis (8.86 micromol CO2 m(-2) s(-1)) and instantaneous water use efficiency (0.79 micromol CO2 mmol H2O(-1)) than either P. elongata (8.20 micromol CO2 m(-2) s(-1) and 0.71 micromol CO2 mmol H2O(-1)) or P. fortunei (3.26 micromol CO2 m(-2) s(-1) and 0.07 micromol CO2 mmol H2O(-1)). The rapid growth of Paulownia did not appear to be correlated with photosynthetic rates. Paulownia fortunei showed more transpiration (48.78 mmol H2O m(-2) s(-1)) and stomatal conductance (840 mmol m(-2) s(-1)) than P. imperialis (20 mmol H2O m(-2) s(-1) and 540 mmol m(-2) s(-1)) and P. elongata (20 mmol H2O m(-2) s(-1) and 410 mmol m(-2) s(-1)), which allowed these two Paulownia species to increase their tolerance to low soil moisture, and maintain higher water use efficiency under these conditions. According to our physiological gas exchange field tests, Paulownia imperialis does appear to be capable of successful growth in semiarid zones.  相似文献   

3.
以格木(Erythrophleum fordii)、降香黄檀(Dalbergia odorifera)、闽楠(Phoebe bournei)檀香(Santalum album)、铁刀木(Cassia siamea)和樟树(Cinnamomum camphora)6种珍贵树种苗木为研究对象,分析自然降温过程中苗木相对叶绿素含量、气体交换参数及叶绿素荧光参数等指标的变化,探讨低温胁迫对这6种苗木光合荧光特性的影响,并利用隶属函数法对6种珍贵树种耐寒能力进行了评价,以期了解这几种植物的抗寒能力差异及低温对其光合能力的影响,为扩大引种和栽培提供依据。结果表明,与对照相比,低温胁迫下6种珍贵树种苗木净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均有不同程度的下降,其中,格木、降香黄檀、闽楠、檀香、铁刀木净光合效率的下降很大程度上来源于非气孔因素抑制,而樟树净光合速率下降可能来源于气孔限制因素。闽楠、檀香和樟树水分利用效率(WUE)呈上升趋势,而格木与降香黄檀WUE均有不同程度的降低,表明闽楠、檀香和樟树能较好地协调碳同化和水分耗散。低温胁迫下6种珍贵树种Fm均有所下降,表明低温可对珍贵树种苗木叶片PSII反应中心的电子传递潜力产生明显的抑制,致使珍贵树种PSII的光能转换效率降低。降香黄檀、闽楠、檀香、铁刀木和樟树经历2次低温胁迫后qP呈现出持续下降的趋势,表明珍贵树种PSII反应中心的开放程度降低。在2次低温胁迫间格木、降香黄檀、闽楠和铁刀木qN差异不显著(p〉0.05),表明珍贵树种具有过剩光能耗散机制,保护光合机构免受破坏。相关性分析结果表明,Pn与Gs、Tr、Fv/Fm、qP、qN、ETR和Fm存在极显著相关关系(p〈0.01),表明Gs、Tr、Fv/Fm、qP、qN、ETR和Fm均可作为衡量植物光合能力的参数。隶属函数法分析结果表明,6种珍贵树种抗寒能力依次为格木〉樟树〉闽楠=檀香=铁刀木〉降香黄檀。总之,?  相似文献   

4.
根修剪对冬小麦根系效率、水分利用及产量的影响   总被引:3,自引:0,他引:3  
通过盆栽试验研究了根修剪对冬小麦根系效率、水分利用及产量形成的影响.结果表明,在不同水分条件下,根修剪均减少了小麦的根量及根呼吸速率,但对根冠比没有显著影响.在湿润和中度干旱条件下,根修剪提高了小麦花期的光合速率和根系效率;在严重干旱胁迫条件下,根修剪小麦的光合速率显著下降,但根系效率与对照相比没有显著差异.在湿润条件下,小剪根处理对籽粒产量并没有显著的影响,而大剪根处理小麦的籽粒产量显著下降;在中度干旱胁迫条件下,小剪根处理小麦的产量(25.18 g pot-1)显著高于对照(22.31 g par-1),但大剪根处理小麦的产量(18.34 g pot-1)显著下降;在严重干旱条件下,两个剪根处理小麦的产量均显著下降.在湿润和中度干旱胁迫条件下,小剪根处理籽粒产量水平的水分利用效率(分别为1.57 g kg-1和1.85 g kg-1)显著大于相应的对照处理(分别为1.46 g kg-1和1.55 g kg-1),但大剪根处理水分利用效率和对照相比没有显著差异;在严重干旱条件下,各剪根处理的水分利用效率和对照相比没有显著差异.可见,在湿润和中度干旱条件下进行的适当根修剪根对作物生产是有利的.图1表3参15  相似文献   

5.
Seasonal changes in soil respiration (SR), soil temperature (ST) and soil moisture (SM) were compared between a barren land with no vegetation (control) and grassland dominated by Heteropogon contortus (L.) of a semi-arid eco-system during 2005-2006. A statistically significant (p<0.001) seasonal change in SR was observed between the two sites. The variation characteristics of soil CO2 effiux rates were observed during wet periods along precipitation gradients and it was consistently higher in grasslands than in control.A maximum soil CO2 efflux of 13.35 +/- 0.33 micromol m2 s-1 in grassland and 7.33 +/- 0.8 micromol m2 s- in control was observed during rainy season-ll, i.e., from October to December, a minimum of 1.27 +/- 0.2 micromol m-2 s-1 in grassland and 0.67 +/- 0.5 micromol m-2 s-1 in control during summer season, i.e., from March to June. A positive significant relation observed between soil respiration and soil moisture (r2above 0.8) and no significant relation was observed between soil CO2 efflux and soil temperature (r2 below 0.3). In water-limited semi-arid ecosystem, rewetting of the soil due to precipitation events triggered the increased pulses of soil respiration especially in grassland when compared to the barren land. The observed soil respiration rates during summer and after the subsequent precipitation events strongly indicated that the soil water-deficit conditions reduce the efflux both in barren land (control) and in grassland of semi-arid eco-system.  相似文献   

6.
This experiment was conducted in 1999 and 2000 in a field naturally infected by Phytophthora capsici to determine the effects of different irrigation methods, namely, basin (B), closed-end furrow (F), drip (D) and sprinkler (S) irrigation on dry yield of chili pepper (Capsium annuum L. K. Maras Type). Water use efficiency (WUE) and plant mortality were also measured. The averages of total applied water to the B, F, D and S plots for the two years were 937.7 mm, 920.6 mm, 886.5 and 913.4 mm, respectively. Thus, the mean seasonal water use by pepper varied from 1020.7 to 1109.7 mm. The highest water use was measured in B, followed by use for S, D and F methods. The highest mean potential dry yield with 1.58 t ha(-1) was obtained using D method. This was followed by S (1.36 t ha(-1)), B (1.13 t ha(-1)), and F (0.81 t ha(-1)) methods. In terms of plant mortality, crops having B irrigation had the highest (93.9%), followed by lessen amount to the S (3.2%), F (3.1%), and D methods (1.7%). Only the B irrigation method stimulated the development of P. capsici disease. On the other hand, mean WUEs varied between 0.7 and 1.7 kg ha(-1)mnm(-1) for Irrigation methods. WUE for D method was slightly higher than S method, but considerably higher than B and F methods.  相似文献   

7.
There is conflicting evidence about the importance of urban soils and vegetation in regional C budgets that is caused, in part, by inconsistent definitions of "urban" land use. We quantified urban ecosystem contributions to C stocks in the Boston (Massachusetts, USA) Metropolitan Statistical Area (MSA) using several alternative urban definitions. Development altered aboveground and belowground C and N stocks, and the sign and magnitude of these changes varied by land use and development intensity. Aboveground biomass (live trees, dbh > or = 5 cm) for the MSA was 7.2 +/- 0.4 kg C/m2 (mean +/- SE), reflecting a high proportion of forest cover. Vegetation C was highest in forest (11.6 +/- 0.5 kg C/m2), followed by residential (4.6 +/- 0.5 kg C/m2), and then other developed (2.0 +/- 0.4 kg C/m2) land uses. Soil C (0-10 cm depth) followed the same pattern of decreasing C concentration from forest, to residential, to other developed land uses (4.1 +/- 0.1, 4.0 +/- 0.2, and 3.3 +/- 0.2 kg C/m2, respectively). Within a land use type, urban areas (which we defined as > 25% impervious surface area [ISA] within a 1-km(2) moving window) generally contained less vegetation C, but slightly more soil C, than nonurban areas. Soil N concentrations were higher in urban areas than nonurban areas of the same land use type, except for residential areas, which had similarly high soil N concentrations. When we compared our definition of urban to other commonly used urban extents (U.S. Census Bureau, Global Rural-Urban Mapping Project [GRUMP], and the MSA itself), we found that urban soil (1 m depth) and vegetation C stocks spanned a wide range, from 14.4 +/- 0.8 to 54.5 +/- 3.4 Tg C and from 4.2 +/- 0.4 to 27.3 +/- 3.2 Tg C, respectively. Conclusions about the importance of urban soils and vegetation to regional C and N stocks are very sensitive to the definition of urban used by the investigators. Urban areas, regardless of definition, are rapidly expanding in their extent; a systematic understanding of how our development patterns influence ecosystems is necessary to inform future development choices.  相似文献   

8.
The paper assesses health of the tropical urban Robertson Lake, Jabalpur which receives domestic sewage from neighboring human inhabitation and is infested with water hyacinth. Peak density of this macrophyte was 12.5 t dw ha(-1). The water-column was anaerobic (0.6 to 1.9 mg O2 L(-1)), neutral in pH, and enriched with inorganic carbon (23.5 to 37.1 mg L(-1)), NH4-N (0.48 to 2.96 mg L(-1)), and organic nitrogen and phosphorus. Density of heterotrophic bacteria was high (6.8 to 15x10(5) cfu ml(-1)) along with that of total coliforms and fecal bacteria. Species diversity of phytoplankton and submerged macrophytes was very low. Growing stands of water hyacinth could store up to 613 g C m(-2), 23.5 g N m(-2) and 5.5 g P m(-2) and released them during decomposition. The release of nutrients was 3-4 times faster than the uptake. Water hyacinth stabilized water quality and provided substantial support to bacterial density, which in turn contributed significantly to its growth and nutrient dynamics. Turnover of water hyacinth was only 70-80%, adding approximately 175 t humus in the lake. The results denote poor health of the lake, characterized by low species diversity, fast shallowing, dominance of detritus food--webs, and the water unsuitable for human consumption.  相似文献   

9.
C-glucosyltransferase (EC 2.4.1.X) is one of the key enzymes for the biosynthesis of puerarin. This paper describes the methodology in purification and assay of the enzyme for the first time in Puerarin lobata (Wild.) Ohwi. C-glucosyltransferase from roots of P. lobata was extracted and partially purified by (NH4)2SO4 saturation. The effects of pH, temperature, and substrate concentration on the activity of the enzyme were investigated. The properties of the puerarin produced by C-glucosyltransferase were studied by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). The peak activity of C-glucosyltransferase was detected in fraction of by 80% saturation of (NH4)2SO4 and the optimal conditions for enzymatic reaction were 35.5 micromol l(-1) of isoliquiritigenin and 560 micromol l(-1) of UDP-G at pH 8.1, 28 degrees C for 1 h. Mn2+ at 1 mmol l(-1) and Al3+ at 1 mmol l(-1) increased the enzyme activity, while Mg2+ inhibited its activity. The enzyme activity in Nicotiana tabacum and P. lobata were detected under the above assay conditions. Higher activity was found in roots than in leaves and stems of P. lobata, while no enzyme activity was detected in leaves of N. tabacum. It was the first time that activity of C-glucosyltransferase, which transforms isoliquiritigenin to puerarin, was detected in P. lobata.  相似文献   

10.
Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3(-)-rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer (15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 micromol N x m(-2) x h(-1) in Sugar Creek and from 0 to 1300 micromol N x m(-2) x h(-1) in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 micromol/L during low discharge to 1000 micromol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO3-. Denitrification in Sugar Creek removed < or = 11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low during high flow.  相似文献   

11.
Lake Uluabat, known for its scenic beauty and richness of aquatic life, is situated in Marmara Region, Bursa (Turkey). On account of its importance, lake Uluabat was designated by the Ministry of Environment as a Ramsar site in 1998. Physical, chemical and microbiological parameters of the aquatic ecosystem in lake Uluabat were measured monthly at five stations from February 2003 to January 2004. The results showed that lake Uluabat can be classified as Class I with respect to temperature (16.36 +/- 7.47 degrees C), nitrate nitrogen (0.63 +/- 0.50 mgl(-1)), sodium (9.64 +/- 2.78 mgl(-1)), chloride (20.45 +/- 4.59 mgl(-1)), sulphate (54.80 +/- 29.97 mgl(-1)); as Class II with respect to dissolved oxygen (7.62 +/- 1.99 mgl(-1)), ammonium nitrogen (0.52 +/- 0.49 mgl(-1)), chemical oxygen demand (35.74 +/- 10.66 mgl(-1)), total coliform (2027 MPN100 ml(-1) (average value)); as Class III with respect to pH (8.69 +/- 0.16) and as Class IV with respect to total nitrogen (84.94 +/- 66.13 mgl(-1)), total phosphorus (1.11 +/- 3.01 mgl(-1)), biochemical oxygen demand (21.21 +/- 6.60 mgl(-1)) according to TWPCR (Turkey Water Pollution Control Regulation). The nutrient content of lake waterapparently indicated that lake had an eutrophic characteristic. Phosphorus was determined as a limiting factor in lake. The measured hardness values (140.94 +/- 14.61 CaCO3 mgl(-1)) indicated that lake water was classified as soft/hard during the study period. Eutrophic characteristic of the lake and contaminant accumulation in water will probably affect the future use of the lake. Therefore, pollution parameters must be regularly monitored and evaluated according to aquatic living and local regulations.  相似文献   

12.
The rate of the primary production of the phytoplankton community in the Petalion Gulf, Aegean Sea, was studied from January 1970 to May 1971, at a station situated at approximately Latitude 37°54N; Longitude 24°11E. A variety of physical and chemical parameters such as chlorophyll, primary nutrients (N,P,Si), temperature, salinity, oxygen and light penetration were also studied simultaneously. The rate of the gross primary production varied from 40 to 200 mg C m-2 day-1, with a mean value of 90 mg C m-2 day-1. The annual gross primary production was calculated to be 33 g C m-2, which is the minimum known value in the Aegean and Mediterranean Seas. Maximum production was found at the depth of 20 m on the average, mainly due to high light intensities. Petalion Gulf supports a small photosynthetic biomass, as indicated by the low seasonal values of chlorophyll a (0.01 to 0.18 mg m-2), the highest values being found in the summer. The low production rate noted may have been due to the low nutrient concentrations found: N, 0.04 to 0.32 g-at/1; P, 0.00 to 0.15 g-at/1; Si, 0.45 to 2.25 g-at/1. It is suggested that inorganic phosphorus and nitrogen may alternate in limiting primary production rates in these oligotrophic waters. The temperate waters of the Petalion Gulf are stratified in summer (15.5° to 24.7°C) and well-mixed in winter (12.9° to 15.0°C); they are oxygen-saturated throughout the year, and of high transparency, with 86 m depth for the euphotic zone on the average yearly. The Petalion Gulf is therefore characterized as a typical oligotrophic biome in the Aegean and Eastern Mediterranean Seas.  相似文献   

13.
Escape from natural enemies is a widely held generalization for the success of exotic plants. We conducted a large-scale experiment in Hawaii (USA) to quantify impacts of ungulate removal on plant growth and performance, and to test whether elimination of an exotic generalist herbivore facilitated exotic success. Assessment of impacted and control sites before and after ungulate exclusion using airborne imaging spectroscopy and LiDAR, time series satellite observations, and ground-based field studies over nine years indicated that removal of generalist herbivores facilitated exotic success, but the abundance of native species was unchanged. Vegetation cover <1 m in height increased in ungulate-free areas from 48.7% +/- 1.5% to 74.3% +/- 1.8% over 8.4 years, corresponding to an annualized growth rate of lambda = 1.05 +/- 0.01 yr(-1) (median +/- SD). Most of the change was attributable to exotic plant species, which increased from 24.4% +/- 1.4% to 49.1% +/- 2.0%, (lambda = 1.08 +/- 0.01 yr(-1)). Native plants experienced no significant change in cover (23.0% +/- 1.3% to 24.2% +/- 1.8%, lambda = 1.01 +/- 0.01 yr(-1)). Time series of satellite phenology were indistinguishable between the treatment and a 3.0-km2 control site for four years prior to ungulate removal, but they diverged immediately following exclusion of ungulates. Comparison of monthly EVI means before and after ungulate exclusion and between the managed and control areas indicates that EVI strongly increased in the managed area after ungulate exclusion. Field studies and airborne analyses show that the dominant invader was Senecio madagascariensis, an invasive annual forb that increased from < 0.01% to 14.7% fractional cover in ungulate-free areas (lambda = 1.89 +/- 0.34 yr(-1)), but which was nearly absent from the control site. A combination of canopy LAI, water, and fractional cover were expressed in satellite EVI time series and indicate that the invaded region maintained greenness during drought conditions. These findings demonstrate that enemy release from generalist herbivores can facilitate exotic success and suggest a plausible mechanism by which invasion occurred. They also show how novel remote-sensing technology can be integrated with conservation and management to help address exotic plant invasions.  相似文献   

14.
The drought tolerance is a very important property of grapevine rootstocks. For that reason the breeding and selection of new rootstock varieties is focused also on the evaluation of their drought tolerance. In this experiment, altogether 20 new hybrids and 4 existing rootstock varieties were compared and evaluated. The experimental scheme involved 3 variants of water supply. Evaluated were the following properties: growth intensity of annual shoots, CCI (chlorophyll content index) and visual characteristics of plants. The most resistant were hybrids from the pedigree groups C (Binova x B?rner), D /Binova x/(Binova x Teleki 5C/) x B?rner/, and F (Teleki5 Cx B?rner). The following hybrids were classified as drought-tolerant: 17-1-6 (C); 17-1-9 (C); 17-6-2 (C); 17-6-9 (C); 17-8-2 (D) and 9-20-1 (F). Based on obtained experimental results and also on correlations existing between individual traits it can be concluded that practically all traits under study may be used when evaluating the resistance of plants to drought. The obtained results indicated that the B?rner rootstock (and thus also the species Vitis cinerea) can be used as a suitable genetic resource for the purpose of the breeding grapevine rootstocks for tolerance to drought.  相似文献   

15.
The knowledge of population effects of food on tropical, filter-feeding cladocerans is scarce because a reduced number of species has been extensively studied. Ceriodaphnia rigaudi Richard 1894, a small-sized cladoceran distributed mainly in tropical and subtropical regions of the world, was studied. The aim of this study was to contribute to the knowledge of the reproductive biology of a poor-known Cladoceran; for this we assessed the effect of feeding and temperature on the reproduction and life cycle of this species. Three microalga species (Pseudokirchneriella subcapitata, Ankistrodesmus falcatus, and Chlorella vulgaris) were supplied as food each at a concentration of 12 mg l(-1) (dry weight, equivalent to 1.3 x 10(6), 0.4 x 10(6) and 1.35 x 10(6) cell m1(-1), respectively, and equivalent to 7.8 microg C ml(-1), at two temperatures (20 and 25 degrees C). We evaluated, among other responses, longevity, total progeny, survival, life expectancy at birth and fecundity. Organisms fed with the microalgae A. falcatus and P subcapitata presented both higher longevity (30.7 +/- 5.91, 26.6 +/- 3.59 days, respectively) and total progeny (45 +/- 13.80, 40.7 +/- 0.66 neonates female (-1) values than those organisms fed C. vulgaris (13.5 +/- 4.63 days and 17.6 +/- 6.19 neonates female (-1), respectively). On the other hand, temperature affected significantly the population parameters of C. rigaudi, recording maximal longevity values (56.1 +/- 9.41 days) at 20 degrees C in organisms fed A. falcatus; however, age at first reproduction and total progeny were negatively affected by this temperature: sexual maturation of the females was delayed until the age of 16 days and the number of neonates produced was smaller (9.8 +/- 3.45 with C. vulgaris; 24.7 +/- 6.01 with P subcapitata, and 35.5 +/- 8.59 neonates female(-1) with A. falcatus). The best reproductive responses for C. rigaudi in this study were obtained with A. falcatus at degrees 25 degrees C.  相似文献   

16.
The rapid increase in residential land area in the United States has raised concern about water pollution associated with nitrogen fertilizers. Nitrate (NO3-) is the form of reactive N that is most susceptible to leaching and runoff; thus, a more thorough understanding of nitrification and NO3(-) availability is needed if we are to accurately predict the consequences of residential expansion for water quality. In particular, there have been few assessments of how the land use history, housing density, and age of residential soils influence NO3(-) pools and fluxes, especially at depth. In this study, we used 1 m deep soil cores to evaluate potential net nitrification and mineralization, microbial respiration and biomass, and soil NO3(-) and NH4+ pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to eight forested reference sites with similar soils. Our results suggest that a change to residential land use has increased pools and production of reactive N, which has clear implications for water quality in the region. However, the results contradict the common assumption that NO3(-) production and availability is dramatically higher in residential soils than in forests in general. While net nitrification (128.6 +/- 15.5 mg m(-2) d(-1) vs. 4.7 +/- 2.3 mg m(-2) d(-1); mean +/- SE) and exchangeable NO3(-) (3.8 +/- 0.5 g/m2 vs. 0.7 +/- 0.3 g/m2) were significantly higher in residential soils than in forest soils in this study, these measures of NO3(-) production and availability were still notably low, comparable to deciduous forest stands in other studies. A second unexpected result was that current homeowner management practices were not predictive of NO3(-) availability or production. This may reflect the transient availability of inorganic N after fertilizer application. Higher housing density and a history of agricultural land use were predictors of greater NO3(-) availability in residential soils. If these factors are good predictors across a wider range of sites, they may be useful indicators of NO3(-) availability and leaching and runoff potential at the landscape scale.  相似文献   

17.
A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.  相似文献   

18.
A field experiment was conducted for two years on a sandy loam (Typic Ustochrept) soil of Punjab to study the effect of organic materials and rice cultivars on methane emission from rice fields. The methane flux varied between 0.04 and 0.93 mg m(-2) hr(-1) in bare soil and transplanting of rice crop doubled the methane flux (0.07 to 2.06 mg m(-2) hr(-1)). Among rice cultivars, significantly (p < 0.05) higher amount of methane was emitted from Pusa 44 compared to PR 118 and PR 111. Application of organic materials enhanced methane emission from rice fields and resulted in increased soil organic carbon content. The greatest seasonal methane flux was observed in wheat straw amended plots (229.6 kg ha(-1)) followed by farmyard manure (111.6 kg ha(-1)), green manure (85.4 kg ha(-1)) and the least from rice straw compost amended plots (36.9 kg ha(-1)) as compared to control (21.5 kg ha(-1)). The differential effect of organic materials in enhancing methane flux was related to total carbon or C:N ratio of the material. The results showed that incorporation of humified organic matter such as rice straw compost could minimize methane emission from rice fields with co-benefits of increased soil fertility and crop productivity.  相似文献   

19.
Yahdjian L  Sala OE 《Ecology》2006,87(4):952-962
Grassland aboveground net primary production (ANPP) increases linearly with precipitation in space and time, but temporal models relating time series of ANPP and annual precipitation for single sites show lower slopes and regression coefficients than are shown by spatial models. The analysis of several ANPP time series showed lags in the ecosystem response to increased water availability, which may explain the difference between spatial and temporal models. The lags may result from constraints that ecosystems experience after drought. Our objective was to explore the structural constraints of the ANPP response to rainfall variability in a semiarid ecosystem, the Patagonian steppe, in southern Argentina. We designed a 3-yr rainfall manipulation experiment where we decreased water input with rainout shelters during two consecutive years, which included three levels of rainfall interception (30%, 55%, and 80%) and a control. In the third year, we irrigated one-half of the plots of each rainfall-interception treatment. We evaluated the immediate effects of drought on current-year ANPP and the effects of previous-year drought on vegetation recovery after water supplementation. ANPP (g x m(-2) x yr(-1)) was linearly related to annual precipitation input (APPT; mm/yr) along the experimental precipitation gradient (ANPP = 0.13 x APPT + 58.3; r2 = 0.34, P < 0.01), and this relationship was mostly accounted for by changes in the ANPP of grasses. Plant density (D; no. individuals/mm2) was related to the precipitation received during the drought period (D = 0.11 x APPT + 18; r2 = 0.39, P < 0.05). The recovery of plants after irrigation was lower for those plots that had experienced experimental drought the previous years relative to controls, and the lags were proportional to the intensity of drought. Therefore, our results suggest that the density of plants may constrain the recovery of vegetation after drought, and these constraints may determine lags that limit the capacity of the ecosystem to take advantage of wet years after dry years.  相似文献   

20.
The diurnal vertical migration of Cochlodinium polykrikoides (C. polykrikoides), which caused a red tide in the Korean coastal waters of the East Sea/Sea of Japan in September 2003, was examined by determining the time-dependent changes in the density of living cells in relation to the depth of the water column. The ascent of this species into the surface layer (depth of water 2 m) occurred during 1400-1500. The descent started at 1600 and a high distribution rate (86%) at 15-20 m was observed at 0300. During the ascent, the cells were widely distributed at each depth level from 0600 hr and at 0800-1100, the cells were primarily distributed in the middle layer (0-6 m). The concentration of dissolved inorganic nitrogen was generally < or = 2.86 micromol l(-1), but at 1400-1500, the concentration in the surface layer reduced to < or = 0.14 micromol l(-1). Moreover, the concentration gradually increased as the depth increased to > or = 5 m. These results showed that the nutrient-consumption rate associated with the proliferation of C. polykrikoides during a red tide is more influenced by the inorganic-nitrogen resources ratherthan the inorganic-phosphorus compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号