首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A maize (Zea mays L.) hybrid was infested with 30 southwestern corn borer [Diatraea grandiosella (Dyar)] larvae per plant at 4, 5, 6, 7 or 8 weeks after planting in a three-year study conducted at Mississippi State, Mississippi. Visual ratings of leaf feeding damage were highest when plants were infested 5 weeks after planting. Plant height increased linearly with the age of plants at infestation. Height of infested plants was significantly less than uninfested plants only when infestations were made 4 weeks after planting. The relationship between age of plants at infestation and yield was curvilinear. Yields were significantly reduced at all infestation times; however, the least yield reduction occurred when plants were infested 6 weeks after planting. To evaluate resistance to southwestern corn borer damage, infestation at 4 or 5 weeks after planting appeared to be most satisfactory. Yield reductions following infestation at 7 and 8 weeks after planting indicated that, when infestations are late, leaf feeding damage ratings alone may not be satisfactory indicators of plant damage.  相似文献   

2.
Caenorhabditis japonica is a bacteriophagous nematode species that was discovered on the semi-social burrower bug, Parastrachia japonensis, which demonstrates egg-guarding and provisioning behaviors. To understand the life history of C. japonica in relation to P. japonensis, we demonstrated the specificity of this association and fluctuations in nematode number on the insect throughout the year. C. japonica dauer larvae (DL), larvae in a nonfeeding diapause stage, were predominantly found as clumps on the adult female insects but rarely found on the male insects in all populations examined. This female-biased association was consistent throughout the year, but after the nymphs hatched, nematodes were not detected on the mother insects showing provisioning behavior. DL appeared on the nymphs, and the number of DL on the newly emerged female insects gradually increased thereafter. C. japonica has never been detected on other invertebrates collected from the P. japonensis habitat thus far. Our data suggest that the life cycles of C. japonica and P. japonensis are synchronized.  相似文献   

3.
地膜覆盖和施氮对菜地N2O排放的影响   总被引:1,自引:0,他引:1  
为了探讨地膜覆盖和不同施氮处理对菜地N_2O排放的影响,以位于西南大学农业部重庆紫色土生态环境重点野外科学观测试验站内辣椒-萝卜轮作菜地为研究对象,采用静态暗箱/气相色谱法,进行为期2 a的田间原位观测.试验设置8个处理,分别为对照常规(NN0)、对照覆膜(FN0),低N常规(NN1)、低N覆膜(FN1),中N常规(NN2)、中N覆膜(FN2),高N常规(NN3)、高N覆膜(FN3),研究地膜覆盖和施氮对菜地N_2O的排放特征和影响因素.结果表明,覆膜与常规两种种植方式对于菜地N_2O的排放体现出明显差异,表现为辣椒季常规显著大于覆膜(P 0. 05),萝卜季为覆膜显著大于常规(P 0. 05). 2014年5月至2016年4月观测期间,覆膜种植下无氮、低氮、中氮和高氮菜地N_2O年均累积排放量分别为244. 91、730. 49、903. 32和1 867. 45 mg·m-2,常规种植下N_2O年均累积排放量为221. 48、840. 33、1 256. 50和1 469. 67 mg·m-2.不同施氮梯度对于菜地N_2O的排放呈现为随施氮量增加N_2O的排放随之增加.通过计算N_2O排放系数可知,覆膜可以一定程度上降低辣椒季N_2O的排放系数,而萝卜季则没有明显规律. 2014年5月至2015年4月,辣椒季常规和覆膜种植下均为低氮菜地的N_2O排放系数最高,在萝卜季则显示为高氮排放系数最高; 2015年5月至2016年4月,则显示辣椒季为高氮菜地N_2O排放系数最高,而萝卜季低氮菜地最高. N_2O的排放通量和土壤氮素含量以及土壤温度呈显著相关关系,而地膜覆盖可一定程度地增加土壤中氮素的含量,进而影响菜地N_2O的排放通量.  相似文献   

4.
The abundance of ammonia-oxidizing bacteria and archaea and their amoA genes from the aerobic activated sludge tanks, recycled sludge and anaerobic digesters of a full-scale wastewater treatment plant (WWTP) was determined. Polymerase chain reaction and denaturing gradient gel electrophoresis were used to generate diversity profiles, which showed that each population had a consistent profile although the abundance of individual members varied. In the aerobic tanks, the ammonia-oxidizing bacterial (AOB) population was more than 350 times more abundant than the ammonia-oxidizing archaeal (AOA) population, however in the digesters, the AOA population was more than 10 times more abundant. Measuring the activity of the amoA gene expression of the two populations using RT-PCR also showed that the AOA amoA gene was more active in the digesters than in the activated sludge tanks. Using batch reactors and ddPCR, amoA activity could be measured and it was found that when the AOB amoA activity was inhibited in the anoxic reactors, the expression of the AOA amoA gene increased fourfold. This suggests that these two populations may have a cooperative relationship for the oxidation of ammonia.  相似文献   

5.
Insect herbivores exhibit various strategies to counter the toxic effects of plant chemical defenses. These strategies include the detoxification, excretion, and sequestration of plant secondary metabolites. The latter strategy is often considered to provide an additional benefit in that it provides herbivores with protection against natural enemies such as predators. Profiles of sequestered chemicals are influenced by the food plants from which these chemicals are derived. We compared the effects of sequestration and nonsequestration of plant secondary metabolites in two specialist herbivores on the development of a generalist predator, Podisus maculiventris. Profiles of glucosinolates, secondary metabolites characteristic for the Brassicaceae, are known to differ considerably both inter- and intraspecifically. Throughout their immature (=nymphal) development, the predator was fed on larval stages of either sequestering (turnip sawfly, Athalia rosae) or nonsequestering (small cabbage white butterfly, Pieris rapae) prey that in turn had been feeding on plants originating from three wild cabbage (Brassica oleracea) populations that have previously been shown to differ in their glucosinolate profiles. We compared survival, development time, and adult body mass as parameters for bug performance. Our results show that sequestration of glucosinolates by A. rosae only marginally affected the development of P. maculiventris. The effects of plant population on predator performance were variable. We suggest that sequestration of glucosinolates by A. rosae functions not only as a defensive mechanism against some predators, but may also be an alternative way of harmlessly dealing with plant allelochemicals.  相似文献   

6.
The effect of plant-eating by the slug, Mariaella dussimieri Gray, and by certain lepidopteran insects and their larvae was studied under field conditions, on the growth of two sympatric annual weeds, Galinsoga ciliata (Raf.) Blake and G. parviflora Cav., in pure and mixed stands. Under the influence of herbivory, both weeds generally produced a greater number of leaves, but the leaf area per plant was drastically reduced. Plant survival and seed output decreased in both weeds due to herbivory, but the effect was more severe in G. parviflora, especially in the mixed stands. Herbivory also reduced the dry matter yield and delayed flowering in G. parviflora. Relatively poor growth of G. parviflora in the mixed stand exposed to herbivory could be attributed to its preferential feeding by the slug and insects which reduced the competitive ability of this weed against G. ciliata.  相似文献   

7.
The on-going introduction of non-native species to Antarctica due to expanding human activity presents an increasing threat to biodiversity. Under the Protocol on Environmental Protection to the Antarctic Treaty, all introduced non-native species should be removed from the Antarctic Treaty area. The non-native grass Poa pratensis was first introduced to Cierva Point (Danco Coast, Antarctic Peninsula), along with substantial quantities of non-Antarctic soil, in the mid-1950s. Consistent with the Protocol, in January 2015 an internationally coordinated team undertook the eradication of the grass. Immediately prior to removal of P. pratensis, factors affecting its establishment, persistence and impacts upon local indigenous species was examined within the international management framework of the Antarctic Treaty System. The underlying soil had a high organic content of 15.5%, which may have contributed to the successful establishment of P. pratensis and restricted, at least initially, its vegetative growth to the enriched area. Examination of P. pratensis expansion from the original introduction sites showed that the plant colony intricate root system facilitated little or no coexistence of other native plants within its extent. The non-native plant colony also constituted a novel habitat for soil fauna within Antarctic terrestrial environments. The P. pratensis plant colony provided an unfavorable habitat for two of the locally endemic soil invertebrates, Cryptopygus antarcticus and Belgica antarctica. These observations led to the selection of an appropriate eradication approach, where the plants were targeted for physical extraction along with all underlying soil. During the eradication, c. 500 kg of soil and plant material from the P. pratensis colony was removed from the site. Monitoring one year later showed no evidence of re-establishment. Consistent with the Committee for Environmental Protection ‘Non-native Species Manual’, we recommend development and implementation of rapid response protocols following the discovery of a non-native plant colony to limit future impacts on indigenous species and local habitats.  相似文献   

8.
Reducing fertiliser applications can reduce production costs for cotton (Gossypium hirsutum L.) growers, as well as nitrogen (N) leaching into the soil and contamination of surface and ground water. But altered N fertilisation may also affect pests and their natural enemies. In this study, plots with four different levels of fertiliser input (0, 45, 90 and 135 kg ha−1 N) were used to investigate the influence of N on cotton pest and beneficial arthropod populations, and on cotton yield in Tifton, GA, USA. We predicted that (1) N fertilisation will correlate positively with cotton plant growth; (2) increased N fertilisation will increase pest populations because plants with more N will be more nutritious for and attractive to herbivores; (3) populations of beneficial arthropods and predation of pests will decline with increased N fertilisation because of reduced plant signaling; (4) increased N fertilisation will increase pest mortality due to parasitoids because of increased host quality. Cotton plant growth was enhanced by N fertilisation but yield was unaffected. N fertilisation significantly affected some pest arthropods but inconsistently. Mirids were most abundant in the high N treatment in 1 year of the study and cotton aphids were most abundant in the highest N treatment in the other year of the study. Arthropod predators were generally more abundant in the high N treatment but only spiders and Geocoris spp. were significantly affected by N treatment, with highest numbers present in the highest N treatment but the significant differences were each only in a single year. The greatest mortality of sentinel pest eggs (Spodoptera exigua) due to predation occurred under low N conditions. N fertilisation had no significant effects on parasitism of feral or sentinel caterpillars.  相似文献   

9.
生物覆盖措施能显著降低敏感脆弱带及裸露坡地水土流失,且具有成本低、见效快等特点,适合在矿区推广.为研究稻草覆盖对稀土尾渣坡面水土流失过程的影响,采用人工模拟降雨试验,对比研究不同雨强(60和90 mm/h)和不同稻草覆盖度(0%、50%和100%)条件下稀土尾矿地表产流、产沙情况.模拟降雨试验在位于江西省九江市德安县的江西省水土保持生态科技园开展,不同雨强采用西安清远测控技术有限公司设计的QYJY-503人工模拟降雨系统进行控制.结果表明:雨强为60 mm/h时,50%和100%稻草覆盖度处理坡面径流开始时间分别比0%稻草覆盖度坡面延迟46%和91%;雨强为90 mm/h时,延迟幅度分别为3.0和4.8倍.0%、50%和100%稻草覆盖度条件下稀土矿渣坡面单位时间产流量分别在产流开始后6、31和41 min达到稳定值.60 mm/h雨强条件下稀土矿渣坡面1 h总产流量呈现0%稻草覆盖度> 100%稻草覆盖度> 50%稻草覆盖度(P < 0.05),而90 mm/h雨强条件下则为0%稻草覆盖度> 50%稻草覆盖度> 100%稻草覆盖度(P < 0.01).雨强为60 mm/h时,50%和100%稻草覆盖度稀土矿渣坡面土壤侵蚀量分别比0%稻草覆盖度坡面降低73.46%和84.53%;而雨强为90 mm/h时,2种措施土壤侵蚀量降幅分别为54.83%和72.14%.研究显示,稻草覆盖措施可以有效降低矿区土壤坡面径流、泥沙产量.   相似文献   

10.
环境激素氯氰菊酯对萼花臂尾轮虫繁殖的影响   总被引:1,自引:1,他引:0  
以2 d种群增长率为指标研究了环境抗雄激素氯氰菊酯对萼花臂尾轮虫的急性毒性;以3 d种群动态参数(种群增长率、混交率、混交雌体受精率和携卵雌体/非携卵雌体)、7 d休眠卵产量和休眠卵孵化率为指标研究了低剂量氯氰菊酯(0.001~0.316 mg.L-1)对萼花臂尾轮虫繁殖的影响;以2 d种群参数分析了在氯氰菊酯中形成休眠卵孵化后的生长性能;以3 d种群参数为指标分析了母体暴露氯氰菊酯,对其后代繁殖的影响.结果表明氯氰菊酯浓度对数与种群增长率呈直线负相关.氯氰菊酯半数效应浓度(EC50)、最低可观察效应浓度(LOEC)和无可观察效应浓度(NOEC)分别为14.22、10和3.16mg.L-1;0.0316 mg.L-1氯氰菊酯组7 d休眠卵产量较对照组下降了41.23%,休眠卵孵化率亦较对照组显著下降;氯氰菊酯试验组中形成的休眠卵孵化后的种群增长率和混交率显著下降;萼花臂尾轮虫母体暴露0.316 mg.L-1氯氰菊酯其后代种群增长率比对照下降了15.96%.试验表明,萼花臂尾轮虫2 d种群增长率对氯氰菊酯较不敏感;低剂量氯氰菊酯可降低休眠卵产量、休眠卵孵化率及孵化后种群增长率,从而减少萼花臂尾轮虫后代早期对种群增长的贡献.  相似文献   

11.
马月  王国祥  曹勋  王小云  马杰 《环境科学》2015,36(7):2504-2510
通过室内实验模拟沉水植物季相交替过程,分析菹草腐解-金鱼藻生长耦合作用对水质变化影响,探讨菹草不同残体量腐解对金鱼藻生长的影响.结果表明,不同残体量条件下,金鱼藻均能将水体营养盐及有机质保持在相对较低水平,且实验第29 d后基本保持稳定,其中DTN0.514 mg·L-1,TN0.559 mg·L-1,TP0.080 mg·L-1,DTP0.014 mg·L-1,TOC13.94mg·L-1,Chl-a26.546 mg·L-1,菹草腐解-金鱼藻生长耦合作用对水质的改善效果明显,其中在20 g残体条件下处理效果较好,对水体TN、DTN、TP、TOC和Chl-a的去除率分别达到89.67%、52.51%、94.99%、55.59%和98.55%;不同残体量条件下金鱼藻的叶绿素、可溶性蛋白、丙二醛含量均比初始值增加,残体释放的营养盐促进了金鱼藻生长,在20 g残体条件下其对金鱼藻生长的促进作用最好.结果表明在水体含有20 g残体条件下,菹草腐解-金鱼藻生长耦合作用对水质的改善及植物生长的促进效果最显著.  相似文献   

12.
熊瑛  王龙昌  杜娟  赵琳璐  周泉  张赛 《环境科学》2017,38(5):2102-2110
土壤呼吸是土壤有机碳库输出的主要途径,为探讨垄作和不同秸秆覆盖量对旱三熟蚕豆田土壤呼吸及有机碳特征的影响,测定了平作无覆盖(T)、垄作无覆盖(R)、垄作+半量覆盖(RS1)、垄作+全量覆盖(RS2)这4个处理下的西南紫色土丘陵区蚕豆/玉米/甘薯旱三熟体系中蚕豆田土壤呼吸及有机碳变化,分析了土壤温度和水分与土壤呼吸的关系.结果表明,蚕豆生长季节农田土壤呼吸随作物生长一致,呈先增加后减弱的变化趋势,全生育期平均土壤呼吸速率差异显著,表现为RS2RS1TR,分别为3.365、2.935、2.683、2.263 g·(m~2·d)~(-1).垄作显著降低了蚕豆农田土壤呼吸速率,而秸秆覆盖显著提高土壤呼吸速率,且随着覆盖量的增加而增加.土壤呼吸速率随土壤温度(5 cm和10 cm)呈指数型增长,10 cm处的回归模型明显好于5 cm.10 cm土层Q10值表现为RS2RS1RT,分别为1.751、1.665、1.616、1.35.垄作和秸秆覆盖下土壤温度、水分与土壤呼吸速率的混合指数模型可以解释土壤呼吸速率变异的68%(R)、79%(RS1)和76%(RS2).垄作和秸秆覆盖下0~5 cm、5~10 cm、10~20 cm、20~30 cm土层土壤有机碳含量均得到不同程度的提高,且随着覆盖量的增加而增加,其中5~10 cm、10~20 cm土层表现为RS2RS1RT,差异达显著水平,且5~10 cm土层有机碳含量增幅最大;但垄作和秸秆覆盖仅显著提高了颗粒有机碳0~30 cm加权平均值,对颗粒有机碳占土壤有机碳比例的影响效应不显著.  相似文献   

13.
Dietary and industrial uses of cassava (Manihot esculenta Crantz) are threatened by the known presence of cyanide in the crop and its products. The toxic HCN content of cassava may be altered by some intrinsic and extrinsic factors in and around the plant, but the extent of any shifts in this regard due to stress conditions created by cassava green spider mites (CGM) Mononychellus tanajoa and mealybugs (CM) (Phenacoccus manihoti, now spreading epiphytotically in almost all cassava-growing areas in Africa, is unknown. In this study, we report variations in the total HCN content of leaf, stem and root tissues of six cassava clones differentially infested by these pests.  相似文献   

14.
农田施用水葫芦对水稻氮素吸收利用的影响   总被引:1,自引:0,他引:1  
以粳稻品种运2645为供试材料,设计农田施用水葫芦(将晒干水葫芦按4 500 kg·hm-2农田施用)、不施用水葫芦处理和施N量为120 kg·hm-2(LN)、240 kg·hm-2(NN)处理,研究其对水稻不同生育时期N素含量、N素吸收、N素分配和N素利用效率的影响.结果表明:①农田施用水葫芦使水稻不同生育时期植株...  相似文献   

15.
Some members of the family Tachinidae (Insecta: Diptera) deposit numerous very small eggs, termed “microtype” eggs, on the food plants of their caterpillar hosts. Parasitization is successful only when the hosts ingest these eggs. To increase the chance of hosts encountering the eggs, microtype tachinid parasitoids have to choose a suitable plant that harbors hosts and lay their eggs near the hosts. In their host location process, semiochemicals emitted by host-infested plants offer the tachinids a reliable cue. We investigated the behavioral responses of two microtype tachinid parasitoids, Pales pavida and Zenillia dolosa, to maize plants infested with their caterpillar host, Mythimna separata, in a wind tunnel. P. pavida females showed a significantly higher rate of landing on caterpillar-infested plants than on mechanically wounded or intact plants, whereas Z. dolosa landed on both the caterpillar-infested and mechanically wounded plants at significantly higher rates than on intact plants. We also examined which part of a caterpillar-infested maize leaf induces oviposition. P. pavida deposited eggs on the margin of the leaf, whereas Z. dolosa preferentially laid eggs around a caterpillar-infested area or a mechanically wounded spot. P. pavida eggs retained their parasitization ability for more than 15?days after they were deposited, whereas the eggs of Z. dolosa could not survive more than 5?days after oviposition. Our results suggest that each tachinid parasitoid employs a different host location strategy to exploit semiochemicals coming from plant–herbivore interaction as cues in order to increase their parasitization success.  相似文献   

16.
Glyphosate, the most extensively used herbicide globally, has raised ecotoxicological concerns because it can be transported into the aquatic environment and cause adverse effects on the aquatic system. However, the functional mechanism of glyphosate on cyanobacteria are not completely disentangled. In this study, we selected six common cyanobacteria to evaluate glyphosate effects on cyanobacterial growth in monoculture experiment. Results showed that the growth of five tested cyanobacterial species were promoted under different degrees, and only Pseudanabaena was inhibited by glyphosate. In the phylogenetic tree based on gene sequences of 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS), a target for glyphosate, we found that the position of Pseudanabaena is the closest to plant, which was sensitive to glyphosate, thereby explaining the inhibitory effect of Pseudanabaena following glyphosate exposure. The primary degraded metabolites or analogs did not induce cyanobacterial growth, laterally demonstrating that glyphosate was used as a source of phosphorus to accelerate cyanobacterial growth because phosphorus levels increased in the medium of glyphosate treatment. Overall, this study provides a better understanding of the influence of glyphosate on the composition of aquatic microbiota and explains the mechanism of cyanobacterial response to glyphosate.  相似文献   

17.
Global climate change threatens world food production via direct effects on plant growth and alterations to pest and pathogen prevalence and distribution. Complex relationships between host plant, pest, pathogen and environment create uncertainty particularly involving vector-borne diseases. We attempt to improve the understanding of the effects of climate change via a detailed review of one crop-vector-pathogen system.The bird cherry-oat aphid, Rhopalosiphum padi, is a global pest of cereals and vector of yellow dwarf viruses that cause significant crop losses in cereals. R. padi exhibits both sexual and parthenogenetic reproduction, alternating between crops and other host plants. In Australia, only parthenogenesis occurs due to the absence of the primary host, thus the aphid continuously cycles from grasses to cereals, allowing for continuous virus acquisition and transmission.We have reviewed the potential impact of future climate projections on R. padi population dynamics, persistence, abundance, dispersal and migration events as well as the interactions between vector, virus, crop and environment, all of which are critical to the behaviour and development of the vector and its ability to transmit the virus. We identify a number of knowledge gaps that currently limit efforts to determine how this pathosystem will function in a future climate.  相似文献   

18.
In order to better understand the contribution of nutrients regeneration pathway, release potential and transformation pattern to cyanobacterial growth and succession, 7 sampling sites in Lake Chaohu with different bloom degree were studied every two months from February to November 2018. The carbon, nitrogen (N) and phosphorus (P) forms or fractions in surface, interstitial water and sediments as well as extracellular enzymatic activities, P sorption, specific microbial abundance and community composition in sediments were analyzed. P regeneration pathway was dominated by iron-bound P desorption and phosphorus-solubilizing bacteria solubilization in severe-bloom and slight-bloom area respectively, which both resulted in high soluble reactive phosphorus (SRP) accumulation in interstitial water. However, in severe-bloom area, higher P release potential caused the strong P release and algal growth, compared to slight-bloom area. In spring, P limitation and N selective assimilation of Dolichospermum facilitated nitrate accumulation in surface water, which provided enough N source for the initiation of Microcystis bloom. In summer, the accumulated organic N in Dolichospermum cells during its bloom was re-mineralized as ammonium to replenish N source for the sustainable development of Microcystis bloom. Furthermore, SRP continuous release led to the replacement of Dolichospermum by Microcystis with the advantage of P quick utilization, transport and storage. Taken together, the succession from Dolichospermum to Microcystis was due to both the different forms of N and P in water column mediated by different regeneration and transformation pathways as well as release potential, and algal N and P utilization strategies.  相似文献   

19.
Hyco Reservoir, a North Carolina power plant cooling impoundment, was impacted by selenium toxicity during the late 1970s. Selenium inputs via coal ash discharge resulted in bioaccumulation through the aquatic food chain which caused reproductive failure and population declines of bluegill, other Lepomis spp., largemouth bass, crappie, yellow perch, and sucker species. Following these declines, green sunfish, satinfin shiner, gizzard shad, eastern mosquitofish, and redbelly tilapia dominated the fish community. During 1990, the power plant converted to a dry fly ash handling system that reduced selenium loading into the reservoir. Construction costs for this system were approximately $48 million and annual operating costs have been approximately $1 million/year. Mean selenium concentrations in reservoir waters at the power plant discharge declined from 8.8 μg/l to 3.2 μg/l within one year of the system operation, and this decline was consistent with a priori mass balance modeling predictions. Depuration of selenium from sediments and tissues of plankton, benthos, and fish has been variable since the system operation. Significant selenium declines have occurred in tissues of aquatic organisms in the eight-year recovery period while little change has been observed in sediments. Recovery of the fish community has been rapid, particularly in areas upstream of the ash pond discharge, and confirmed population-level modeling predictions using a Leslie-matrix demographic model. Diversity of the fish community increased throughout the reservoir and species dominance shifted from a green sunfish and satinfin shiner-dominated system to a bluegill-dominated system within five years after the system operation. Increased bluegill and green sunfish hybridism also occurred during early recovery and coincided with a low abundance of spawning bluegill adults. Sport fisheries have re-developed for largemouth bass and crappie and strategies for managing the recovering fishery have included periodic stock assessments, creel surveys and harvest restrictions, prey fish stocking, and continued contaminant monitoring. This pollution abatement system has been successful in reducing selenium loading into the reservoir and prompting recovery of the aquatic ecosystem.  相似文献   

20.
Agroforestry is considered to be a promising alternative to short-fallow shifting cultivation or other monocropping systems. An on-farm experiment was established in 1996 in northern Viet Nam to examine the contribution of the leguminous bush Tephrosia candida (Roxb.) D.C. as a fallow or hedgerow species and as a mulch producer to improve nutrient cycling and prevent nutrient losses by erosion. The systems tested were upland rice monocropping (Mono), natural fallow (NaFa), fallow of Tephrosia (TepFa), hedgerow intercropping with upland rice (Oryza sativa L.) and internal mulching using pruned Tephrosia biomass (TepAl), and upland rice with external mulching using Tephrosia biomass (TepMu). Over two cropping seasons, from April 1996 to April 1998, nutrients recycled and inputs and exports were recorded, as well as changes in C-, N- and P-pools, and in pH in the 0–5 cm topsoil layer.The Tephrosia systems (TepFa, TepAl, TepMu) prevented nutrient losses by erosion effectively. Compared to the NaFa system, the TepFa system accumulated 34% more N in the above-ground plant parts and increased topsoil N by 20%, probably due to N-fixation. There was a trend that the less labile P-pools (NaOH-P) were reallocated into the more labile P-pools (Bicarb-P) in the soil of the TepFa system. Burning released significant amounts of the inorganic P-pools in both the NaFa and TepFa systems and this effect seemed to be more pronounced in the TepFa than in the NaFa. Organic input to crop export ratios for N and P were >1 in the TepAl and TepMu treatments. This was due to a sufficient quantity and quality of the Tephrosia mulching material. However, moderately labile NaOH-extractable organic P seemed to be depleted in the topsoil due to high P uptake in the TepMu treatment. Thus, nutrient cycling and nutrient balances were improved under the Tephrosia systems. But for long-term P sustainability, there is a belief that a combined use of mulching and mineral P fertiliser is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号