首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Copolovici LO  Niinemets U 《Chemosphere》2005,61(10):1390-1400
To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.  相似文献   

2.
Monoterpenes are C10H(n)O(n') compounds of natural origin and are potentially environmentally safe substitutes for traditional pesticides. Still, an assessment of their environmental behaviour is required. As a first step in a theoretical study focussing on monoterpenes applied as pesticides to terrestrial environments, soil fate model input-parameters were determined for 20 monoterpenes with widely different structural characteristics. Input-parameters are the water solubility (S(W)), vapour pressure (P), n-octanol-water partition coefficient (K(OW)), atmospheric air and bulk water diffusion coefficients (D(A)air and D(W)water), first order biodegradation rate constants (k), and their temperature dependence. Values for these parameters were estimated or taken from previous experimental work. The quality of the estimations was discussed by focussing on their statistics and by comparison with available experimental data. From these properties, the air-water partition coefficient (K(AW), Henry's Law constant), the interface-water partition coefficient (K(IW)) and the organic matter-water partition coefficient (K(OM)) could be estimated with varying levels of accuracy. In general, little experimental data turned out to be available on biodegradation rate constants and on the temperature dependence of physico-chemical parameters.  相似文献   

3.
Two of the most typical Mediterranean tree species (Pinus pinea [Pp] and Quercus ilex [Qi]) were screened for emissions of monoterpenes during the period of June 1997–July 1998 in the field at a semi-rural location near Terrassa (Barcelona, Spain) using a bag-enclosure sampling method followed by gas chromatography analysis with mass selective detection (GC/MSD). A mean of about eight samples per day were measured. A periodical sampling throughout 1 yr allowed to examine data for long-term influences. The main compounds emitted from Pp were linalool, limonene, trans-ocimene and 1,8-cineole (80% on average). Eighty percent of total emissions in Qi were β-pinene, α-pinene, myrcene and sabinene, followed by limonene, β-phellandrene, γ-terpinene and trans-ocimene (20%). On average, the standard monoterpene emission rate from Qi was approximately three times higher than from Pp. Diurnal and seasonal emission variations were characterized with regard to temperature and PAR. For both species a statistically significant variation in monoterpene emissions was observed between seasons for 1 yr period. For Pp, the seasonal variability not accounted for by PAR and temperature is also estimated and compared with existing models in the literature.  相似文献   

4.
Total monoterpene levels of the order of 100 μg m −3 were assessed in the summer night air of a typical young planted forest of Scots pine (Pinus silvestris) in Sweden. These concentrations are much higher than those reported in previous studies of ambient monoterpenes. Predominant species were α-pinene and 3-carene. Camphene, β-pinene, myrcene, β-phellandrene and limonene were other prominent components determined. The monoterpenes were shown to originate almost exclusively from Scots pine and the proportions between them to be characteristic of this conifer species.  相似文献   

5.
Monoterpenes are biogenic volatile organic compounds (BVOCs) which play an important role in plant adaptation to stresses, atmospheric chemistry, plant–plant and plant–insect interactions. In this study, we determined whether ozonolysis can influence the monoterpenes in the headspace of cabbage. The monoterpenes were mixed with an air-flow enriched with 100, 200 or 400 ppbv of ozone (O3) in a Teflon chamber. The changes in the monoterpene and O3 concentrations, and the formation of secondary organic aerosols (SOA) were determined during ozonolysis. Furthermore, the monoterpene reactions with O3 and OH were modelled using reaction kinetics equations. The results showed that all of the monoterpenes were unequally affected: α-thujene, sabinene and d-limonene were affected to the greatest extend, whereas the 1,8-cineole concentration did not change. In addition, plant monoterpene emissions reduced the O3 concentration by 12–24%. The SOA formation was dependent on O3 concentration. At 100 ppbv of O3, virtually no new particles were formed but clear SOA formation was observed at the higher ozone concentrations. The modelled results showed rather good agreements for α-pinene and 1,8-cineole, whereas the measured concentrations were clearly lower compared to modelled values for sabinene and limonene. In summary, O3-quenching by monoterpenes occurs beyond the boundary layer of leaves and results in a decreased O3 concentration, altered monoterpene profiles and SOA formation.  相似文献   

6.
Guo XX  Brimblecombe P 《Chemosphere》2007,68(3):436-444
Phenols are widely present in the atmosphere and nitration probably in the aerosol phase leads to nitrophenols. Nitration by nitric acid in sulfuric acid can be rapid, but little is known of the process under atmospheric conditions. The Henry's law constants K(H)(dagger) of phenol and 2-, 3- and 4-nitrophenol were all measured by a bubble stripping method as: 2820mol kg(-1) atm(-1) (at 298K), 147mol kg(-1) atm(-1) (at 298K), 1.6x10(4)mol kg(-1)atm(-1) (at 308K) and 2.1x10(4)mol kg(-1) atm(-1) (at 308K), respectively. The Henry's law constant of phenol in sulfuric acid systems is lower by more than a factor of two at 1020mol kg(-1) atm(-1) (at 298K) in 40wt% sulfuric acid, which is in line with salting-out of oxygen-containing aromatic compounds in water-sulfuric acid systems. The Henry's law constants of 2- and 4-nitrophenol behave differently and are almost independent of sulfuric acid concentration. The variation of K(H)(dagger) with temperature (T) described in terms of -dln(K(H)(dagger))/d(1/T) does not to vary with sulfuric acid concentration, suggesting enthalpy of dissolution for phenol is independent of sulfuric acid. The series of Henry's law constants measured here can describe the equilibrium situation for phenols in careful determinations of phase partitioning in the atmosphere.  相似文献   

7.
In this investigation the ozonolysis of of three monoterpenes (α-pinene, Δ3-carene and limonene) was studied was studied in authentic mechanical ventilation systems, that included either a cross flow or a rotary heat exchanger. The effects of varying three experimental parameters were investigated: the level of ozone (25 and 75 ppb), the reaction time (25 and 75 s), and the surface area in the ventilation duct (14.8 and 29.5 m2). The initial concentration of each of the monoterpenes was 20 ppb in every experiment, and 1–16% of the α-pinene, <0.5–13% of the Δ3-carene, and <0.5–16% of the limonene reacted. The effects of humidity (g m−3) and temperature of the outdoor and supply air, and water losses in the ventilation duct, were also evaluated. Experiments were based on a chemometric statistical design. Comparison of the results to theoretically calculated values showed that theoretical calculations underestimated the amounts that reacted in the ventilation systems by factors of 2–13, depending on the monoterpene and experimental settings.  相似文献   

8.
This theoretical study was performed to investigate the influence of soil temperature, soil water content and soil organic carbon fraction on the mobility of monoterpenes (C10HnOn') applied as pesticides to a top soil layer. This mobility was expressed as the amount volatilized and leached from the contaminated soil layer after a certain amount of time. For this, (slightly modified) published analytical solutions to a one dimensional, homogeneous medium, diffusion/advection/biodegradation mass balance equation were used. The required input-parameters were determined in a preceding study. Because the monoterpenes studied differ widely in the values for their physico-chemical properties, the relative importance of the various determinants also differed widely. Increasing soil water saturation reduced monoterpene vaporization and leaching losses although a modest increase was usually observed at high soil water contents. Organic matter served as the major retention domain, reducing volatilization and leaching losses. Increasing temperature resulted in higher volatilization and leaching losses. Monoterpene mobility was influenced by vertical water flow. Volatilization losses could be reduced by adding a clean soil layer on top of the contaminated soil. Detailed insight into the specific behaviour of different monoterpenes was obtained by discussing intermediate calculation results; the transport retardation factors and effective soil diffusion coefficients. One insight was that the air-water interface compartment is probably not an important partitioning domain for monoterpenes in most circumstances. The results further indicated that biodegradation is an important process for monoterpenes in soil.  相似文献   

9.
The effects of monoterpenes on the degradation of 14C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14C-2,4-DCP to 14CO2, after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg−1). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg−1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants.  相似文献   

10.
Kurz J  Ballschmiter K 《Chemosphere》1999,38(3):573-586
Modelling the environmental fate of persistent organic pollutants like polychlorinated diphenyl ethers (PCDE) requires the knowledge of a number of fundamental physico-chemical properties of these compounds. We report here the physico-chemical properties of 106 PCDEs, which are over 50% of all possible congeners. Vapour pressures P(OL), water solubilities S(H2O), and n-octanol/water partition coefficients K(OW) were determined with chromatographic methods. With these experimental data the Henry's law constants H, gas/water K(GW) and gas/n-octanol K(GO) partition coefficients were calculated. Vapour pressures and water solubilities and n-octanol/water partition coefficients of the PCDEs are close to those of similar groups of organochlorine compounds like polychlorinated biphenyls (PCBs) and dibenzofurans (PCDFs). A similar environmental fate can be predicted and was partially already been observed.  相似文献   

11.
Meylan WM  Howard PH 《Chemosphere》2005,61(5):640-644
The octanol-air partition coefficient (K(OA)) is useful for predicting the partitioning behavior of organic compounds between air and environmental matrices such as soil, vegetation, and aerosol particles. At present, experimentally determined K(OA) values are available for only several hundred compounds. Therefore, the ability to estimate K(OA) is necessary for screening level evaluation of most chemicals. Although it is possible to estimate K(OA) from the octanol-water partition coefficient (K(OW)) and Henry's law constant (HLC), various concerns have been raised in regard to the usability of this estimation methodology. This work examines the accuracy and usability of K(OW) and HLC in application to a comprehensive database set of K(OA) values for screening level environmental assessment. Results indicate that K(OW) and HLC can be used to accurately predict K(OA) even when estimated K(OW) and HLC values are used. For an experimental dataset of 310log K(OA) values for different compounds, the K(OW)-HLC method was statistically accurate as follows: correlation coefficient (r2): 0.972, standard deviation: 0.526, absolute mean error: 0.358 using predominantly experimental K(OW) and HLC values. When K(OW) and HLC values were estimated (using the KOWWIN and HENRYWIN programs), the statistical accuracy was: correlation coefficient (r2): 0.957, standard deviation: 0.668, absolute mean error: 0.479.  相似文献   

12.
13.
HO2 radical concentrations were measured by a laser-induced fluorescence instrument for three nighttime periods during the intensive field campaign at Rishiri Island, Japan, in June 2000. The HO2 mixing ratio had temporal variations around its average of 4.2±1.2 (1σ) pptv and showed a positive correlation with the summed mixing ratio of four monoterpene species, α-pinene, β-pinene, camphene, and limonene, that sometimes reached 1 ppbv. Our model calculations suggested that ozonolysis reactions of monoterpenes were the main source of nighttime radicals and they explained 58% of measured HO2 concentration levels. The model roughly reproduced the dependence of the HO2 mixing ratio on the square root of the radical production rate due to the ozonolysis reactions of the monoterpenes. However, the absolute HO2 mixing ratio was significantly underpredicted by the model. We discuss possible reasons in terms of misunderstood RO2 chemistry, RO2 interference with HO2 observations, unknown radical production process associated by high NO2 mixing ratio, and the contribution of unmeasured olefinic species to radical production via their reactions with ozone.  相似文献   

14.
15.
Octanol-water partition coefficients (K(OW)) of nine environmentally relevant brominated diphenyl ether (BDE) congeners present in two technical mixtures were directly measured using a slow-stir technique. LogK(OW) values of tri- to heptabrominated BDE congeners ranged from 5.74 to 8.27, and were related to bromine content by the equation logK(OW)=0.621(#Br)+4.12(R(2)=0.970). The directly determined K(OW) values were generally lower than those calculated using fragment constant methods, particularly at higher levels of bromine substitution. The quasi-experimental approach of using fragment constants to modify a "backbone" compound of known K(OW) was much more successful than using the fragment constants to "build" the entire molecule. The tri- and tetrabrominated congeners are in the range of optimum bioaccumulation potential.  相似文献   

16.
用H2O2作为氧化剂,在595~704 K、18~30 MPa条件下,对活性染料废水进行超临界水氧化反应.实验结果表明,COD去除率随温度、压力、停留时间和氧化剂量的增加而上升,在704 K、28 MPa时,COD去除率可达到98.4%,停留时间小于35 s.COD、H2O2和水的反应级数分别为1、0和0;反应活化能Ea为37.21 kJ/mol;指前因子A为76.69 s-1.  相似文献   

17.
萃取技术分离工业废水中的苯胺   总被引:1,自引:0,他引:1  
研究以硝基苯为萃取剂,25℃下通过盐析萃取法回收工业废水中苯胺。以静态分批实验考察了废水酸度、初始苯胺浓度、萃取剂与废水比(油水比)、萃取级数、无机盐种类(NaCl,KCl,Na2SO4,CaCl2,K2SO4)和浓度对苯胺萃取率的影响,获得了最佳操作工艺条件。实验结果表明,硝基苯盐析萃取技术可以有效回收废水中苯胺,且高pH和溶剂比有利于苯胺萃取,随着无机盐浓度的增加苯胺回收率增加。在适宜的条件下,通过盐析作用,经过五级萃取苯胺萃取率接近100%。  相似文献   

18.
Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10–1300 μmol m−2 s−1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33–66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)−1 h−1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)−1 h−1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.  相似文献   

19.
20.
The salting-out effect by seawater constituents on the water solubilities of 11 aromatic compounds, anthracene, pyrene, phenanthrene, biphenyl, naphthalene, p-nitrotoluene, p-toluidine, o-nitrophenol, m-nitrophenol, p-nitrophenol and phenol was investigated. A best fit equation (r = 0.965) for the salting-out parameters, K, and distilled water solubilities, So, at 20°C was found to be K = ?0.0298 log So + 0.114. Seawater solubilities, S, predicted for solutions of ionic strength, I, using the equation log S = (0.0298 I + 1) log So ? 0.114 I were in agreement with observed values within 13 % (average 4.8 %) and there were no significant differences between values from the Pacific Ocean seawater and those from 35 o/oo NaCl solutions. It was concluded that dissolved organic matter in seawater had an insignificant effect for the test chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号