首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文建立了三峡库区土壤中有效态微量元素含量的区划原则。根据确立的有效态微量元素含量丰缺的指标,运用等值线图法,采用微机处理,最后将库区划分为八个土壤亚区。  相似文献   

2.
我国是世界上食管癌发病率最高的国家之一。本文对比了四川省内食管癌高、低发病区的土壤地球化学环境,计算了土壤中微量元素有效态含量的总量,结果发现高、低发病区在耕地利用类型,土壤类型以及土壤的物理、化学性质方面都存在明显差异,表明土壤地球化学环境恶劣、尤其是土壤中微量元素缺乏与食管癌高发有密切关系。  相似文献   

3.
骨炭+沸石对重金属污染土壤的修复效果及评价   总被引:1,自引:0,他引:1  
采用盆栽试验,研究了铜铅镉复合污染土壤添加骨炭和沸石前后对土壤pH值、土壤中重金属有效态含量、蕹菜生长、重金属吸收量的影响。结果表明,土壤污染后pH值显著降低,土壤中重金属有效态含量显著增加,蕹菜生长不良,株高、鲜重、干重显著降低,同时蕹菜重金属含量增加;添加固化剂后土壤pH值提高了2.21和2.29个单位,土壤有效态重金属含量显著降低,蕹菜株高、鲜重、干重增加,同时使轻度污染土壤上的蕹菜达到卫生安全标准。  相似文献   

4.
乌鲁木齐市蔬菜基地土壤有效态镍的空间变异特征   总被引:2,自引:0,他引:2  
以乌鲁木齐市北郊蔬菜基地为典型区甜干旱区绿洲城市郊区土壤有效态镍含量的结构特征进行分析,得出该区有效态镍的空间分布格局并揭示了引起这种分布格局的成因,结果表明:乌鲁木齐市北郊蔬菜基地有效态镍属中等变异。半方差函数模型拟合表明有效态镍含量可以用球状函数拟合,具有高度的空间自相性,有效态Ni主要受内在因子(土壤形成因子,如气候、地形、土壤类型等)控制。采用Kriging最优内插法得到了有效态镍含量的空间分布格局,呈现明显的北高南低分布规律。  相似文献   

5.
对多年利用矿山废水灌溉的水稻土中Pb的化学形态、植物有效态和动物/人有效态进行了分析研究。结果表明,土壤中Pb的碳酸盐结合态、可交换态、有机结合态和Fe-Mn氧化物结合态含量分别是363、338、185和155mg/kg,其总和占总Pb含量的72.70%,表明其较高的环境敏感性;动物/人有效态Pb含量为1085mg/kg。土壤有机态Pb与植物中Pb含量相关性最高,表明用有机态表征土壤Pb的植物有效态比惯常使用的DTPA态要好。植物有效态与动物/人有效态含量相比,前者为后者的17.05%,表明土壤Pb污染对当地动物/人的潜在生态危害远远大于水稻等农作物;Fe-Mn氧化物结合态Pb与植物有效态(即有机结合态)及动物/人有效态Pb相关性最好,表明该形态对土壤Pb的生物有效性具有积极作用。  相似文献   

6.
东南景天是一种镉和锌的超积累植物,改变土壤p H能否有效提高其吸收镉的效率,需要进一步验证。采用盆栽实验研究不同土壤p H下东南景天吸收和积累Cd的差异以及对Ca Cl2提取有效态镉的影响。结果表明,降低土壤p H值显著提高了土壤镉的有效态含量。弱酸性土壤即p H接近5.5时东南景天生物量及累积镉的量最大,土壤镉去除率也最高,达6.6%。强酸性即当p H接近4时,虽然植物地上与地下镉含量均最高,但生物量最小,植物去除率较其他处理低。研究证实降低土壤p H是提高植物提取效率的有效办法,这为进一步利用东南景天修复镉污染土壤,提高修复效率提供了科学依据。  相似文献   

7.
本文探讨了小区域范围内土壤pH值与土壤主要肥力指标N、P、K有效态的关系,结果表明土壤pH值与土壤速效P含量呈极显著负相关,相关系数为-0.498;与土壤缓效K呈显著正相关,相关系数为0.352;与水解性N和速效K含量相关性不明显。  相似文献   

8.
纳米羟基磷灰石修复镉锌复合污染紫色土效果初探   总被引:1,自引:0,他引:1  
选取安宁河谷平原矿区周边受Cd和Zn复合污染紫色土为研究对象,采用老化试验,探索添加羟基磷灰石对土壤中重金属生物有效性以及形态分布的影响,羟基磷灰石添加比例(w/w)设置为0%(CK)、1%(P1)、3%(P3)和5%(P5)。结果表明:①添加羟基磷灰石能够显著提高土壤p H值,P1、P3和P5的p H值分别比CK升高了0. 13、0. 18、0. 21个p H单位;②添加羟基磷灰石能够显著降低土壤有效态Cd和Zn (0. 025 M HCl提取),相较于CK,P1、P3和P5的有效态Cd含量可分别降低36. 0%、78. 8%、90. 2%,有效态Zn含量可分别降低25. 4%、67. 4%、84. 5%;③添加羟基磷灰石能够明显降低土壤中活性较高的可交换态和碳酸盐结合态Cd和Zn的比例(P 0. 05),明显升高了活性较低的铁锰结合态、有机结合态以及残渣态Cd和Zn的比例(P 0. 05),从而促进Cd和Zn向非活性态转化。本研究证明了羟基磷灰石在安宁河谷平原土壤重金属污染修复中有较大的应用潜力。  相似文献   

9.
氮磷养分配施对土壤碳氮特征及叶用枸杞生长的影响   总被引:1,自引:0,他引:1  
通过田间定位试验,探讨水肥一体化技术下不同养分配施措施对土壤碳氮特征及叶用枸杞生长的影响,筛选出适合该区域叶用枸杞高效可持续生产管理模式。结果表明,随着养分浓度的增大,各层次土壤中有机碳含量整体呈现增加趋势,土壤中易氧化态有机碳及土壤碳库管理指数(CPMI)变化趋势与土壤有机碳类似。与对照相比,水肥一体化施肥增加了0~20cm和20~40cm土层硝态氮含量;但随着土层深入,土壤剖面硝态氮含量整体呈现出逐渐降低的趋势,而对照处理硝态氮呈现增加趋势,40~60cm土层硝态氮含量达最大。在水肥一体化N2P3处理下,叶用枸杞叶芽产量最高。研究确定,N2P3处理的"少量多次"水肥一体化灌溉模式,是叶用枸杞生产区最佳的农业高效高产的水肥生产管理模式。  相似文献   

10.
本栽培方法包括 :用含微量元素的营养液浸泡种子 4h~ 6h ,使种子充分吸收营养液至饱和 ;处理后的种子在催芽室于 2 0℃~ 2 8℃条件下催芽 1d~ 7d后成为含有机态微量元素的种芽或种芽菜。本方法提高了种芽的有机态微量元素含量 ,有利于人体吸收 ,满足人体健康的需要 ,方便实用。(CN 1 2 4 7696A)富素种芽及种芽菜的无土栽培方法  相似文献   

11.
我国煤中微量元素的赋存及开发利用   总被引:2,自引:0,他引:2  
煤中微量元素的赋存规律和综合利用工艺的研究和开发,对于资源的合理利用具有重要意义。在综合国内煤中微量元素研究文献的基础上,分析了煤中微量元素的来源可分为原生、次生和后生,赋存状态主要与有机质的吸附和络合作用有关;开发利用的现状较为落后,表现为研究区域少、研究手段和技术水平差。指出,必须深入对煤中微量元素的赋存规律和综合利用工艺进行深入研究,合理利用资源,使矿区实现可持续发展。  相似文献   

12.
通过对不同采收期暴马丁香叶中主要活性成分和微量元素含量的分析,研究活性成分与微量元素对暴马丁香叶质量的影响.采用高效液相色谱法测定暴马丁香叶中紫丁香苷的含量,紫外分光光度法测定其总黄酮和多糖的含量,原子吸收分光光度法测定其铁、锰、锌、铜的含量,再采用SPSS16.0软件对测定结果进行统计分析.暴马丁香叶中紫丁香苷和总黄酮在5月2日含量较高,4月20日含量较低;总多糖和4种微量元素在5月2日含量较低,4月20日含量较高.与不同采收期紫丁香苷和总黄酮含量上升或下降趋势对比,总多糖和微量元素的含量变化总体上却与其相反.暴马丁香叶中紫丁香苷、总黄酮与Fe、Mn、Zn元素间呈现一定的拮抗作用,而多糖与Fe、Zn、Cu元素间呈协同作用,微量元素对暴马丁香叶的质量有一定的影响.  相似文献   

13.
An inventory of trace element inputs to agricultural soils in China   总被引:45,自引:0,他引:45  
It is important to understand the status and extent of soil contamination with trace elements to make sustainable management strategies for agricultural soils. The inputs of trace elements to agricultural soils via atmospheric deposition, livestock manures, fertilizers and agrochemicals, sewage irrigation and sewage sludge in China were analyzed and an annual inventory of trace element inputs was developed. The results showed that atmospheric deposition was responsible for 43–85% of the total As, Cr, Hg, Ni and Pb inputs, while livestock manures accounted for approximately 55%, 69% and 51% of the total Cd, Cu and Zn inputs, respectively. Among the elements concerned, Cd was a top priority in agricultural soils in China, with an average input rate of 0.004 mg/kg/yr in the plough layer (0–20 cm). Due to the spatial and temporal heterogeneity of the sources, the inventory as well as the environmental risks of trace elements in soils varies on a regional scale. For example, sewage sludge and fertilizers (mainly organic and phosphate-based inorganic fertilizers) can also be the predominant sources of trace elements where these materials were excessively applied. This work provides baseline information to develop policies to control and reduce toxic element inputs to and accumulation in agricultural soils.  相似文献   

14.
An understanding of the long-term cycling of trace elements in soil with broiler litter fertilization under various forage utilization strategies is needed to develop sustainable agricultural production systems. We evaluated differences in Cu, Mn, Zn, and six other trace elements in response to 5 yr of bermudagrass [Cynodon dactylon (L.) Pers.] management varying in fertilization and harvest strategies on a Typic Kanhapludult in Georgia. Chicken (Gallus gallus) broiler litter was a significant source of trace elements that led to 3.4 +/- 0.5 times higher Cu, 2.0 +/- 0.3 times higher Mn, and 2.1 +/- 0.2 times higher Zn in the surface 3 cm of soil than when forage was fertilized inorganically. There were variable effects of broiler litter fertilization on other trace elements, depending upon element, depth of sampling, and forage utilization strategy. Concentrations of all trace elements in soil were below levels considered toxic to plants. Soil at a depth of 0 to 3 cm under grazed paddocks had 33 +/- 5% greater Cd, 18 +/- 1% greater Cr, 53 +/- 24% greater Cu, and 24 +/- 7% greater Zn compared with unharvested and hayed management. Trace elements in soil were unaffected whether forage was unharvested or removed as hay. These results suggest that broiler litter is a significant source of several trace elements and that ruminant processing of forage and subsequent deposition of excreta on the paddock allow these trace elements to accumulate more at the soil surface where they might interact with the high concentration of organic matter.  相似文献   

15.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   

16.
ABSTRACT: The water from 32 strip mine water impoundments and nine livestock watering ponds in North Dakota, South Dakota, and Wyoming were analyzed for trace elements. Because of the high concentrations of trace elements in coal and bentonite clay, the possibility exists for these elements to dissolve or be suspended in the water. Strip mine ponds were not significantly higher in trace element concentrations compared to livestock ponds. All but one of the 41 ponds sampled contained elemental concentrations that would be detrimental for livestock use or aquatic life use. Cadmium and lead were the elements most frequently in excess of water quality crieria. Lead was found in the study ponds about 35 times the median concentration of North American rivers. Manganese concentrations were found to exceed iron in many ponds, which is unusual in natural waters. The potential for detrimental concentrations of trace elements in pond water must be evaluated when designing land use management plans for ponds intended to be used by livestock or aquatic life.  相似文献   

17.
Agronomic use of biosolids as a fertilizer material remains controversial in part due to public concerns regarding the potential pollution of soils, crop tissue, and ground water by excess nutrients and trace elements in biosolids. This study was designed to assess the effects of long-term commercial-scale application of biosolids on soils and crop tissue sampled from 18 production farms throughout Pennsylvania. Biosolids application rates ranged from 5 to 159 Mg ha(-1) on a dry weight basis. Soil cores and crop tissue samples from corn (Zea mays L.), soybean (Glycine spp.), alfalfa (Medicago sativa L.), orchardgrass (Dactylis spp.) hay, and/or sorghum [Sorghum bicolor (L.) Moench] were collected for three years from georeferenced locations at each farm. Samples were tested for nutrients, trace elements, and other variables. Biosolids-treated fields had more post-growing season soil NO3 and Ca and less soil K than control fields and there was some evidence that soil P concentrations were higher in treated fields. The soil concentrations of Cu, Cr, Hg, Mo, Mn, Pb, and Zn were higher in biosolids-treated fields than in control fields; however, differences were < or = 0.06 of the USEPA Part 503 cumulative pollutant loading rates (CPLRs). There were no differences in the concentrations of measured nutrients or trace elements in the crop tissue grown on treated or control fields at any time during the study. Commercial-scale biosolids application resulted in soil trace element increases that were in line with expected increases based on estimated trace element loading. Excess NO3 and apparent P buildup indicates a need to reassess biosolids nutrient management practices.  相似文献   

18.
Sediments impounded within flood control reservoirs are potentially important archives of environmental and geomorphic processes occurring within drainage basins. The concentrations of select sediment-associated trace elements were assessed within the impoundment of Grenada Lake, a relatively large flood control reservoir in Mississippi with a history of contaminant bioaccumulation in fish. The post-construction sediments (after 1954) are discriminated from the pre-construction sediments (before 1954) based on depth variations in sediment texture and 137Cs emissions. The concentrations of select trace elements of the post-1954 sediments all are statistically greater than the pre-1954 sediments, and these same sediments also are enriched in clay. Once these concentrations are normalized by clay content, all trace elements in the post-1954 sediments are lower in concentration than the pre-1954 normalized sediments. Moreover, the trace elements when normalized by clay or Al content show virtually no change vertically (over time) within the reservoir impoundment. This suggests that the sources of these sediment-associated trace elements within Grenada Lake, whether natural or anthropogenic, have not changed appreciably over the lifespan of the reservoir and that the degradation of sedimentologic and ecologic indices within the lake are due to the sequestration of clay or clay-sized materials.  相似文献   

19.
The modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (or Bureau Communautaire de Reference, BCR) was used to predict trace element mobility in soils affected by an accidental spill comprising arsenopyrite- and heavy metal-enriched sludge particles and acid waste waters. The procedure was used to obtain the distribution of both the major (Al, Ca, Fe, Mg, and Mn) and trace elements (As, Bi, Cd, Cu, Pb, Tl, and Zn) in 13 soils of contrasting properties with various levels of contamination and in the sludge itself. The distributions of the major elements enabled us to confirm the main soil fractions solubilized in each of the three steps, and, in turn, to detect the presence of pyritic sludge particles by the high Fe extractability obtained in the third step. Cadmium was identified as being the most mobile of the elements, having the highest extractability in the first step, followed by Zn and Cu, Lead, Tl, Bi, and As were shown to be poorly mobile or nonmobile. In the case of some of the trace elements, the residual fractions decreased at higher levels of contamination, which was attributed to the anthropogenic contributions to the polluted samples. Comparison with soil-plant transfer factors, calculated in plants growing in the affected area, indicated that a relative sequence of trace element mobility was well predicted from data of the first step.  相似文献   

20.
建立了微波消解-电感耦合等离子体质谱法同时测定PM2.5中12种痕量金属元素的方法。对不同消解体系进行了讨论,确定采用HNO3+H2O2消解体系。方法检出限在0.01~6.4 ng/m3之间,精密度为0.5%~8.9%,加标回收率在69.2%~92.6%之间。应用该方法测定了衡山PM2.5中痕量金属元素的含量,讨论了痕量元素的浓度分布特征,对各元素进行了相关性分析,并应用富集因子法对来源进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号