首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
钛酸锂电池广泛应用于储能系统,其安全性也备受关注。采用加速量热仪与电池循环仪联用技术,对钛酸锂电池在循环过程中的热响应情况进行了研究。研究表明,测试电池在放电和充电阶段均有明显的小幅度温升现象。通过测试电池在不同倍率下的产热情况,发现电池在各循环阶段的绝热产热量与循环倍率成正比,其热失控危险性也随着循环倍率的增大而增加。  相似文献   

2.
为了提高锂离子电池安全性,将碳酸亚乙烯酯、亚硫酸丙烯酯与二甲基乙酰胺加入到1.0mol/L LiPF_6/碳酸乙烯酯+碳酸二乙酯(1∶1wt%)的基准电解液中,配制成阻燃电解液。运用C80微量量热仪对钛酸锂负极(放电至1.0V)与基准电解液共存体系、钛酸锂负极(放电至1.0V)与阻燃电解液共存体系进行热稳定性测试,并计算得到热力学参数。对Li/基准电解液/Li_4Ti_5O_(12)和Li/阻燃电解液/Li_4Ti_5O_(12)半电池进行充放电循环测试、循环伏安测试与SEM扫描电镜测试。实验结果表明,钛酸锂负极与阻燃电解液体系反应放出的热量较钛酸锂负极与基准电解液体系减少了35.4%,且具有更高的活化能,提高了钛酸锂电池体系的热稳定性;同时电化学测试结果表明,阻燃电解液与钛酸锂负极有良好的相容性,可以应用到钛酸锂电池体系。  相似文献   

3.
为定量研究锂离子电池热失控的危险性,利用锂离子电池在滥用条件下释放气体的种类及体积分数,计算锂离子电池热解气体爆炸极限并研究锂电池荷电状态对热解气体爆炸极限的影响。结果表明:在一定热失控条件下锂离子电池荷电状态为100%时其热解气爆炸下限为6.22%,上限为38.4%,在相同热失控条件下,锂离子电池热解气体的爆炸极限范围随着荷电状态的升高而增大,锂电池的荷电状态对热解气体的爆炸上限影响较大而对爆炸下限影响较小。在相似条件下,锂离子电池热解气体的爆炸极限范围比普通烃类气体大,一旦锂电池发生热失控会对锂离子电池运输造成潜在威胁。  相似文献   

4.
为研究锂离子电池热失控过程中的相关特性,在细水雾基础上加入惰性气体进行抑制锂离子电池火灾试验。选取荷电状态为0%、50%、100%的磷酸铁锂电池分别在空气、N_2、CO_2气体环境中研究热失控特性;在热失控研究基础上,利用细水雾喷射装置开展锂离子电池热失控灭火试验,对比分析锂离子电池热失控爆发时间、温度变化、灭火时间等参数。结果表明:锂离子电池热失控经历鼓包破阀、初期喷火、稳定燃烧、火焰衰减、火焰熄灭、火焰复燃阶段; N_2、CO_2均能降低锂离子电池燃烧温度,减弱爆炸强度,CO_2与纯水细水雾抑制锂离子电池燃烧效果优于N_2与纯水细水雾,证明惰性气体与细水雾对锂离子电池火灾的协同抑制作用。  相似文献   

5.
为探索针对磷酸铁锂电池组热失控行为的高效灭火剂,搭建锂电池燃烧-抑制试验平台,选取27 Ah磷酸铁锂电池组,以300 W外部热源过热诱发电池热失控至起火。在水阻断磷酸铁锂电池热失控行为试验基础上,开展水凝胶灭火剂对磷酸铁锂电池组热失控行为阻断效果试验研究,对比分析锂离子电池组热失控爆发时间、温度变化速率等参数。结果表明:水对锂电池组冷却深度不足且利用率不高,无法有效阻断电池组间热失控传播。水凝胶灭火剂可快速扑灭明火,结束喷放后电池表面温度始终低于热失控临界温度,可有效阻断电池组热失控行为。灭火剂喷放速率越大,阻止电池组热失控传播越明显,大流量的水凝胶灭火剂可完全阻止热失控在电池组单体间传播。  相似文献   

6.
为明确锂电池的火灾危险性,对不同数量磷酸铁锂电池组火灾时的电池表面温度、火焰形态、火焰温度、热释放速率、质量损失损率以及可燃气体体积分数等燃烧特性参数进行试验研究。结果表明:磷酸铁锂电池组的热失控温度约200~300℃,呈现集中燃烧,气相火焰温度可达1 100℃;磷酸铁锂电池组电池数量增加,喷射火焰出现的次数增多,热释放速率峰值相应出现;电池组最大质量损失速率随电池数量的增加呈幂函数变化,放热量与电池数量的1. 28次方成正比。  相似文献   

7.
为解决与锂离子电池热失控有关的空运安全问题,利用自主设计的锂电池火灾试验平台,对不同包装、数量及荷电状态(SOC)的18650型锂离子电池开展燃爆试验研究。观察锂离子电池热失控现象,进行阶段划分,研究锂离子电池热失控传播过程;记录不同条件下锂离子电池初爆响应时间、燃爆峰值温度及峰值温度持续时间,考察不同包装、数量及SOC对锂离子电池空运安全的影响。结果表明:锂离子电池燃烧可分为初爆和燃爆2个阶段,一节电池热失控可形成连锁燃烧反应;电池热稳定性随SOC增大而显著降低;空运电池数量严重影响空运安全;用瓦楞纸包装时,燃爆峰值温度高达820℃,不能提高锂离子电池安全性。  相似文献   

8.
锂离子电池在生产生活中扮演着重要角色,为了对其热性能有更全面的了解,对锂离子电池放电条件下的热行为进行了探究。通过采集表面温度、电压、热释放速率等参数后对比发现,在可逆热与不可逆热的作用下,电池放电过程中存在明显的升温。此外,放电处理将导致电池出现更为明显的升温情况,更早发生热失控。最后,经过放电处理的锂电池在外加热源作用进而发生失控的实验过程中有着更剧烈的热失控行为,并最终释放较少的热量。  相似文献   

9.
为研究锂电池在民航飞行低压特殊环境的安全性及发生热失控灾害后的高温危险性,通过可模拟飞行变动条件的动压变温实验舱开展系列实验,研究锂电池在不同低压环境下的(101,60,30 kPa)多节18650型锂离子电池热失控温度特性,采集电池池体温度及热失控喷射释放温度等参数。研究结果表明:随环境压力降低,圆柱锂电池间的热失控传播并不能被阻断,但锂电池热失控灾害所释放产生的高温区域减少,且高温持续时间变短,释放所产生温度的高温危险性随环境压力的降低而有所降低。  相似文献   

10.
以三元锂电池模组为研究对象,在SOC为100%的条件下加热诱发热失控,结合视频分析和热流分析,总结不同型号三元锂电池热失控的过程规律。NCM111和NCM523电池在热失控过程中产生大量烟气,NCM622和NCM811电池在热失控过程中产生猛烈火焰。整个电池组热失控过程经历时间最长的是NCM111电池,最短的是NCM622电池,NCM523和NCM811电池在失控时间上具有一定的相似性。三元锂电池的辐射热流会出现多个峰值,其中NCM111、NCM523和NCM811电池都是第一个峰值最大,NCM622电池是最后一个峰值最大。在各电池组中,NCM622电池热流值峰值最大,约为328 kW/m2。  相似文献   

11.
为研究细水雾灭火系统对18650型锂电池热失控的抑制效果,利用自设计实验平台进行抑爆实验,对比初爆与燃爆两个关键点及有无外部热源的温度变化图。研究表明,细水雾能够明显抑制18650型锂电池热失控,但施加细水雾的时间点对抑制效果影响较大,初爆后施加细水雾能够有效抑制,在燃爆后施加细水雾10s内温度降低200℃以上,但由于锂电池内部电解液复燃的特点,温度回升。温升速率的变化使得电池初爆的时间和温度分别提前了67.4%和44.4%,据此提出通过探测18650型锂电池初爆释放气体发现热失控发生并在最短时间内移除异常行为电池来控制电池热失控及其热量的异常传播。  相似文献   

12.
锂电池在生活中的使用越来越普及,但锂电池热失控造成的损失是不可估量的。使用红外热成像监测锂电池表面高温区域面积的扩散,从电池过充、内部隔膜刺穿和外部短路3个方面获取电池热成像的表面高温区域分布。通过MATLAB对电池升温过程中的热成像进行红外图像处理,使用最大类间方差法分割电池表面的高温区域。最后采用高斯逼近函数拟合高温区域面积的变化,分析出3种锂电池热失控的原因。  相似文献   

13.
为研究21700和18650新旧2型多用途锂离子电池在航空运输低压环境下的热失控特性差异,采用动压变温实验舱搭建实验平台开展实验。将实验环境压力设定为飞机巡航时的环境压力30 kPa,对比常压101 kPa,使用外部热源加热的方式触发锂电池热失控,利用热传播引发相邻电池热失控,分别从热失控温度变化特性、热释放速率和热解气体组分浓度变化进行分析。研究结果表明:能量密度更高的21700电池热失控峰值温度更高,高温危险性要高于18650电池,但触发热失控所需的热量更多,电池间热传播时间会延长;低压环境有利于降低锂电池热失控燃爆峰值温度,减小燃爆热释放速率,但会产生更多CxHy和CO等具有燃爆性的热解气体,可能会在有限空间内与氧气混合引起二次燃爆。  相似文献   

14.
锂离子电池广泛应用的同时也出现了燃烧、爆炸等安全问题.针对锂电池热失控及火灾问题,综述了电池内部热失控演变过程、热失控气体释放及其燃爆风险,以及热失控和火灾发生时有毒有害气体的危害性等方面近年来的研究进展.最后提出今后主要研究方向是电池模块/电池包内热失控气体释放和流动过程研究、气体爆炸危险性动态变化规律研究和大容量高比能富镍电池单体/模块热失控特性和规律研究等.  相似文献   

15.
为研究不同灭火剂对储能电池模组火灾有效性,搭建储能舱试验平台,选取8. 8 kWh磷酸铁锂储能电池模组,以0. 5 C倍率恒流过充诱发电池热失控至起火,灭火试验采用中压细水雾、Novec1230、七氟丙烷、六氟丙烷4种不同灭火剂,对比不同灭火剂的灭火效能。研究结果表明:六氟丙烷无法在短时间内扑灭明火; Novec1230和七氟丙烷2种气体灭火剂能快速扑灭明火,但降温效果不彻底,容易发生复燃,均不适合作为磷酸铁锂电池模组灭火剂;中压细水雾能迅速扑灭明火,持续喷射可防止复燃,是较为理想的灭火材料。  相似文献   

16.
许铤 《劳动保护》2021,(11):91-93
锂电池为生产和生活带来了极大的便利,但在各种应用场景下事故的发生,也让其安全问题引发重点关注。本文通过案例分析,介绍锂电池的构成与特性、生产安全、使用安全,以及应急处置等内容。锂电池是指以锂或含锂化合物为正负极材料,使用非水电解质的电池,通常可分为锂离子电池和锂金属电池。  相似文献   

17.
复合相变材料(PCM)应用于锂电池组的热管理是当前研究的热点。然而,PCM对锂电池组热失控传播特性的影响规律仍不甚明晰。实验研究了不同PCM填充率对锂电池组的影响,分析其热失控触发时间、最高温度、质量损失和热释放速率等参数变化规律。结果发现,添加PCM后,电池表面温度、CO和SO2浓度均出现了不同程度的降低,但对热释放速率没有明显的影响。PCM填充率为0%和10%的电池组均发生了热失控传播,而30%、50%、100%的PCM填充率能有效阻隔热失控传播的发生。  相似文献   

18.
为了研究不同特性参数细水雾抑制锂电池组火灾的效果,利用计算流体动力学模型和火灾动力学模拟程序对不同特性参数细水雾灭火效果进行了分析.采用锥形量热仪在50 kW/m2辐射热条件下和100%荷电状态下对锂离子电池进行燃烧试验,获取其热释放速率曲线,热释放速率峰值为9.23 kW.在试验获得参数的基础上以6个18650型锂电池建立火灾模型,利用火灾场模拟软件FDS对不同雾滴直径、雾动量和喷雾强度的细水雾的灭火过程进行数值模拟.定量分析熄灭锂离子电池火的细水雾相对适宜的条件范围,研究细水雾的特性参数对锂离子电池组灭火效果的影响.结果表明:在细水雾雾滴动能不变的情况下,随细水雾雾滴粒径增大,灭火时间先波动后增大,在细水雾粒径为50~100μm的工况下系统抑制锂离子电池火效果最佳,灭火时间最短,耗水量最少;水雾动量变化在一定区间内增加对锂电池灭火有增强效果,当雾滴速度足以穿越火焰时,增加水雾动量对灭火效果影响不大;在规定范围内喷雾强度越大,细水雾能够气化的数量越多,吸收的热量也越多,越有利于灭锂离子电池火灾.  相似文献   

19.
为明确在地面常压环境和商用飞机巡航高度低气压环境下锂电池热失控火灾危险特性随电池数量的变化关系,分别于95 kPa地面常压环境和20 kPa低压环境下,开展不同电池数量梯度的热失控试验,测量热释放速率,总热释放量,烟气温度,CO、CO2和碳氢等气体的实时体积分数.结果表明:最高热释放速率和总热释放量与电池数量均呈幂函数...  相似文献   

20.
为精准界定热失控发展过程中锂电池热聚集特征,采用理论和试验相结合的方法,研究热滥用引发的大尺寸三元锂电池热模型。首先,依据能量守恒定律,明确电池热模型中的加热片产热量Qe、化学反应产热量Qf、电能释放产热量Qj和环境散热量Qd这4个热量参数,进而基于物理热量计算公式(Q=CMΔθ)和集总参数法,构建大尺寸三元锂电池由热滥用引发的热模型;其次,对模型参数获取进行理论分析,研究4个热量参数对电池热累积变化的重要度;最后,结合试验数据,将研究区间以点(tii)进行分区,确定表面传热系数h的值,进一步验证辐射对流散热下热失控锂电池热模型。结果表明:总产热量Qw为12.88×105 J,总散热量Qd为6.60×105 J,其中,辐射散热量为2.91×105 J,对流散热量为3.69×105 J,利用热模型计算出的热量理论预测热失控峰...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号