首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 375 毫秒
1.
为揭示煤中甲烷气体的储运机制,选取井下煤样研究不同温度条件下甲烷气体的等温吸附解吸实验。基于Langmuir模型、等量吸附热计算模型和解吸迟滞系数对实验数据进行分析,研究煤中甲烷气体解吸迟滞现象的热力学特征。结果表明:随温度升高,Langmuir模型得到的吸附常数均呈下降趋势;甲烷解吸迟滞现象明显,迟滞程度随温度升高缓慢下降;受解吸迟滞效应影响,相邻温度区间内吸附曲线的等量吸附热较为相近,不同温度区间内解吸曲线的等量吸附热高于吸附曲线,差异显著;解吸迟滞现象影响煤层甲烷含量预测的准确性,并且解吸曲线的热力学特征规律性较差。  相似文献   

2.
为研究不同温度和气体压力下煤岩吸附瓦斯行为及热力学特性,考虑真实气体行为和吸附相的影响,进一步修正L-F模型以量化煤岩吸附能力,通过不同温度和压力条件吸附数据验证新修正吸附模型的适用性.并以此计算煤岩等量吸附热,探讨温度和气体压力(吸附量)对等量吸附热的影响.结果表明,新修正的吸附模型能较好地表征低、中、高气体压力试验范围下的等温吸附行为,且较原L-F模型能够更精确地预测其他条件吸附量.煤岩吸附瓦斯过程中等量吸附热的绝对值随温度和吸附量升高均呈降低趋势,但气体压力处于亨利定律区域时,其对应等量吸附热并未展现出对温度和吸附量的依赖性,该值可作为评价煤岩在低压区域内吸附瓦斯亲和力的唯一指标.  相似文献   

3.
为探究无烟煤对超临界态CH4-CO2混合气体的吸附特性,采用重量法开展无烟煤对纯CH4与纯CO2气体、3种体积浓度CH4-CO2混合气样的超临界等温吸附实验,应用过剩吸附理论和Langmuir单层吸附理论,通过校正绝对吸附量、计算吸附相密度、煤的比表面积以及测定吸附平衡后游离态气体组分,探究由亚临界状态到超临界状态下无烟煤吸附纯CH4、纯CO2以及混合气体的吸附相密度变化特征、混合气吸附特征以及吸附分子层数。研究结果表明:煤对纯CH4与纯CO2、混合气体过剩吸附量随着压力增大呈现出先增大后减小的峰值型曲线;CH4绝对吸附量随吸附压力增大不断增大,接近CH4临界压力时,绝对吸附量缓慢增加并趋于稳定。低压下CH4在煤颗粒中以单层吸附为主;超过临界压力后出现表面局部2层吸附的现象;1~3 MPa 时,CO2在煤颗粒中即表现出2层吸附为主的现象,随压力增大甚至出现局部4层吸附的现象,煤颗粒对CO2有更大的吸附能力。  相似文献   

4.
本文在液氮温度下,测试了硫铁矿矿样在气体饱和蒸气压力范围内对N2的吸附过程及吸附量,用BET和BJH理论模型计算出硫铁矿矿样的孔体积和孔表面积.根据试验结果,探讨了硫铁矿的孔体积与孔比表面积的关系,及其对硫铁矿吸附能力的影响,即硫铁矿对N2的吸附能力与总孔体积、总孔比表面积呈正相关性.  相似文献   

5.
为揭示CO在烟煤中的微观吸附和扩散机理,利用Wiser烟煤分子模型,通过巨正则蒙特卡洛(GCMC)和分子动力学方法,研究5种不同温度(293.15,303.15,313.15,323.15,333.15 K)下,压力为0.1~3.0 MPa时CO吸附量、吸附热的变化,采用能量分布分析CO在烟煤中的吸附行为,利用扩散系数和扩散活化能研究CO在烟煤中的扩散特性。研究结果表明:CO在烟煤分子中的模拟结果符合朗格缪尔(Langmuir)吸附规律,随着温度的升高,Langmuir参数a和b减小,CO在烟煤分子中饱和吸附量和吸附能力降低。温度越高,烟煤分子的等量吸附热越低,烟煤分子吸附CO分子的平均等量吸附热为21.20~23.11 kJ/mol,小于42 kJ/mol,属于物理吸附;随着压力的升高,CO分子由能量较高的优势吸附位点逐渐向相对较弱的吸附位点移动;在模拟的温度和压力条件下,CO在烟煤分子模型中的扩散系数随温度和压力的升高而增加,扩散活化能随压力的升高而减小。研究结果为揭示CO在烟煤分子中微观吸附与扩散规律,准确预测采空区封闭火区煤自燃情况具有重要意义。  相似文献   

6.
为定量分析水分含量和孔隙压力变化对煤层气渗流特征的影响,采用ASAP2020型比表面微孔分析仪进行低温液氮吸附试验,并通过等温吸附装置和三轴伺服渗流装置进行不同含水率条件下的煤岩吸附和渗流试验.在此基础上,建立考虑煤岩水分含量影响的吸附模型和煤层气渗透率模型,采用试验数据验证其合理性.结果 表明:在液氮吸附试验中,当相对压力较小时,煤岩吸附作用主要依靠范德华力;当相对压力较大时,其吸附作用则主要为毛细凝聚.在相对压力变化过程中,氮吸附量随相对压力的增大呈增大趋势,同时在相对压力较小时液氮脱附曲线与吸附曲线重合,且存在显著的吸附滞后现象.当煤岩中水分含量相同时,煤层气吸附量随孔隙压力的增大先增大后趋向于平缓,而当孔隙压力恒定时,煤层气吸附量随水分含量的增大呈减小趋势.在吸附作用的影响下,煤岩表面吸附变形量与煤层气吸附量的变化趋势一致.在水分与吸附作用综合作用下,煤岩渗透率随孔隙压力的增大呈先减小后趋于平缓的趋势.当孔隙压力恒定时,煤岩渗透率随水分含量的增大显著减小.基于吸附理论,建立考虑水分影响的煤岩吸附模型及吸附变形表达式.综合考虑水膜及其分离压的影响,进一步构建考虑煤层气吸附-水分耦合作用的煤岩渗透率模型.模型计算值与试验数据具有一致性,可较好地表征煤岩在不同含水量条件下的渗流规律.  相似文献   

7.
以甲苯和苯组成的双组分气体作为吸附质,活性半焦作为吸附剂在20℃下进行吸附实验,测定该混合气体在活性半焦上的平衡吸附量;再利用纯组分甲苯和苯在活性半焦上的Langmuir吸附等温线,运用Extend-Langmuir(E-L)方程预测双组分气体在活性半焦上的平衡吸附量,并与实验值进行对比.实验结果表明,E-L方程对于预测甲苯-苯双组分气体在活性半焦上的总平衡吸附量要比各组分吸附量准确,平均相对误差仅为1.40%,最大相对误差为3.32%.  相似文献   

8.
为了预测多元混合气体可燃性极限,通过化学平衡计算软件分析确定了气体在可燃性下限(LFL)和可燃性上限(UFL)的燃烧产物及计算绝热火焰温度(CAFT),基于能量平衡方程和简化反应模型,分别建立了混合气体LFL和UFL预测模型。应用该预测模型对CH4、C2H4、C3H8、C3H6和CO组成的不同比例混合气体可燃性极限进行预测。结果表明:简化反应模型对于LFL和UFL预测值与文献中实验值的平均相对误差分别为2.76%和5.45%,相关系数分别为0.995和0.950;同时发现两步简化模型对含有C2H4和CO混合组分预测结果误差较大,但对于平均碳原子数大于2的混合气体,预测结果一致性较好。  相似文献   

9.
为了研究常压不同条件下煤样对N2/CO2/CH4单组分气体的吸附特性,以Langumir单分子层吸附模型为依据,对其吸附阶段进行划分,选择长焰煤、气肥煤和无烟煤分别进行了单组分气体吸附试验,探讨不同试验条件对煤吸附量的影响。结果表明:在常压阶段,煤对单组分气体的吸附规律服从Langumir单分子层吸附模型的第一阶段,吸附量与压力正相关;煤的变质程度、吸附温度及压力和吸附气体的种类是影响吸附量的主要因素,并在不同情况下对煤吸附量的影响程度不同;高低变质煤样对吸附量的影响大,而中等变质程度的影响小;温度是低压阶段影响吸附量的主要因素;吸附气体种类对吸附量的影响是由于其自身物化性质差异,相同试验条件下煤对3种单组分气体的吸附量从大到小为CO2、CH4、N2。  相似文献   

10.
为预测深部或浅部煤层不同温度和不同压力条件下的吸附等温线,选用型煤以高低温试验装置为依托,测试了温度为293.15,273.15,253.15 K的吸附等温线。基于T-P模型,利用等温吸附曲线对公式中的参数进行了合理的求解,探讨了一种简单的煤对瓦斯吸附等温线预测方法。研究表明:同一吸附平衡压力下,温度越低,煤的瓦斯吸附量越大;ε-ω吸附特征曲线与温度无关,呈现对数的形式;参数m和拟合度R2满足抛物线的关系,存在拟合效果最好时的参数m值。采用T-P模型预测得到的吸附等温线与实测的吸附等温线无论是趋势还是定量结果均十分吻合,其相对误差不超过5%。  相似文献   

11.
研究煤体吸附甲烷的热效应对于深入揭示煤层气在煤表面的吸附机理有重要意义。通过C80微量量热仪测试了无烟煤、焦煤、褐煤在二氧化碳与水预处理前后的甲烷吸附热力学参数,得到甲烷的等温吸附曲线和吸附热曲线,并建立了甲烷吸附量—吸附热定量模型,从能量角度解释了煤样预处理前后对甲烷的吸附特性。研究结果表明:经二氧化碳与水预处理后,煤样对甲烷的吸附量以及吸附过程产生的微量吸附热均有所增加,且预处理对煤体造成的影响主要体现在能增大其表面孔隙结构。  相似文献   

12.
为准确掌握和预测多元可燃气体的爆炸极限,开展2种多元可燃气体爆炸极限的理论预测模型研究。第1种模型针对“多种可燃气体+多种惰性气体”在空气中或氧气中混合,基于求解可燃气体绝热火焰温度的总比热特性方法以及化学平衡反应中的贫燃料(富氧)反应,提出该多元可燃气体的爆炸下限预测模型;第2种模型针对“可燃气体+惰性气体+氧气”混合,基于热平衡方程及混合气体的各组分浓度、淬灭电势及燃烧潜热,提出该多元可燃气体的爆炸极限预测模型。结果表明:在预测多元可燃气体的爆炸极限时,第1种模型具有较广泛的应用性,且表现出较高的准确度;第2种模型具有使用简单的特点,且扩展了LCR(勒夏特列原理)的应用范围。  相似文献   

13.
为了研究高温高压条件下煤孔隙结构变化对瓦斯吸附特性的影响,选取九里山矿无烟煤,在压力为7 MPa、温度为40~130℃的条件下进行等温吸附实验和压汞实验。研究结果表明:煤样对甲烷的等温吸附曲线在该压力、温度条件下符合Ⅰ型吸附曲线特性,吸附规律符合Langmuir吸附模型;在压力7 MPa和温度130℃条件下,煤样的孔隙结构发生一定的变化,煤的比表面积增大、累计孔体积降低,可见孔及裂隙的数量比例增高,加强了煤样孔隙之间的连通度,导致原本吸附在煤样表面的甲烷分子大量解吸;在压力不变的情况下,随着温度的不断增高,煤的极限吸附量逐渐减小,其主要原因是样品孔隙结构的破坏和分子间作用力的变化。  相似文献   

14.
为研究煤层硫化氢(H2S)吸附特性,厘清煤层H2S赋存规律及改善H2S防治效果,采用分压测试法研究煤对H2S的吸附规律。以山西保利铁新煤业有限公司9#煤为研究对象,分别使用N2,He/H2S,N2/H2S为吸附介质开展等温吸附试验,分析煤对H2S及含H2S混合气体的吸附特性及影响因素。结果表明:煤对H2S的吸附量随压力升高而增加,随温度升高而降低,且温度对煤吸附H2S吸附量影响较大;H2S及N2/H2S混合气体的吸附曲线均符合Langmuir吸附模型,煤吸附N2/H2S混合气体时,H2S和N2存在竞争吸附,且N2吸附能力优于H2S;等温条件下,N2竞争吸附量随吸附压力的增加而增大,等压条件下,N2的竞争吸附量受温度影响较小。  相似文献   

15.
工业生产中爆炸事故往往是由多元可燃气体与空气混合后遇到明火而引起的,为研究乙烷(C2H6)、乙烯(C2H4)、一氧化碳(CO)、氢气(H2)对甲烷爆炸特性的影响,选取多组分可燃气体甲烷爆炸压力特性和自由基发射光谱的影响进行研究,利用陕西省工业过程安全与应急救援工程技术研究中心重点实验室搭建的多功能球形气体/粉尘爆炸实验装置和单色仪进行爆炸实验测试,同步采集时间—压力曲线、中间产物(OH,CH2O)的发射光谱信号,考察多组分可燃气体浓度对甲烷爆炸压力特性和中间产物的影响。结果表明:在富氧状态下,多组分可燃气体加剧了甲烷—空气混合体系的爆炸剧烈程度,随着体系中氧气含量的减少、由富氧状态变为贫氧状态、促进作用逐渐减弱转变为阻尼作用,爆炸压力特性与中间产物发射光谱参数的影响规律基本保持一致,均呈高度正相关;多元混合体系爆炸剧烈程度越大,自由基发射光谱达到峰值的速度越快,自由基更早、更快的积累是加剧爆炸程度的原因之一。  相似文献   

16.
为明确作用于采空区的复合惰气的竞争吸附,进行不同温度、压力及组分下烟煤对N2、O2、CO2多元气体竞争吸附分子的模拟研究。研究结果表明:当注入压力达到3 MPa后,竞争吸附效果不再明显,为高压注入提供一定的理论基础;随着CO2分压的增大,O2吸附量降低速度逐渐平缓,初步确定最佳注入配比范围为2∶1至3∶1,为进一步结合实际工程中成本等因素确定最佳注入配比提供参考;等量吸附热受吸附条件的影响较小,仅与吸附质本身有关;随着CO2分压的增大,范德华能升高56.9%,分子内能升高78.7%,静电能升高67.2%,CO2对整个系统内的吸附作用强度及吸附量有着较大的影响;随着CO2分压增大,N2竞争吸附能力逐渐弱于O2,竞争吸附能力大小顺序为CO2>O2>N2。  相似文献   

17.
为了解决目前采用的直立型地面钻井抽采范围小、工作面所需钻井数量多及瓦斯流量和浓度偏低的问题,基于屯兰矿12507工作面Ⅱ段工程地质情况,提出地面“L”型钻井提高瓦斯抽采效率的理论和实践研究。通过PFC3D颗粒流离散元数值模拟软件对工作面覆岩采动影响进行模拟,得到采动影响下的覆岩结构、裂隙和孔隙率变化。研究结果表明:屯兰矿12507工作面Ⅱ段的垮落带高度为15.87 m,裂隙带高度为49.46 m,采空区上方15~50 m、沿倾向方向距离采空区边界20~100 m的范围内裂隙较发育,孔隙率高且稳定。在屯兰矿12507工作面Ⅱ段进行工程实践,得到地面“L”型钻井在抽采效率、工作面上隅角瓦斯治理及采空区瓦斯有效利用方面优于普通地面钻井抽采,抽采系统工作149 d瓦斯抽采浓度平均为52.52%,抽采纯量平均为9.48 m3/min,上隅角瓦斯浓度平均为0.21%,降低了矿井瓦斯灾害出现的风险并提高了煤层气的利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号