首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于WRF-Chem模型,结合气象要素,从PM2.5浓度的消减量及时空变化特征等方面模拟分析了煤改电政策实施前后京津冀地区采暖期(2018年11月~2019年3月)PM2.5的排放变化.结果表明,WRF-Chem模型很好地模拟了京津冀地区PM2.5浓度变化,北京、天津和石家庄模拟值与观测值的相关系数分别为0.66、0.66和0.52,表现出良好的相关性.煤改电政策的实施对京津冀重点地区PM2.5减排效果明显,PM2.5日均减少量分布在0.2~6.1μg/m3,减少比例分布在1.2%~7.8%.PM2.5小时均值变化显示,2018年12月PM2.5减少量分布在0.4~8.3μg/m3,减少比例分布在2.3%~7.7%.其中,北京大兴区减排量达8.3μg/m3,天津地区减排比例达7.7%.在特殊气象条件下,煤改电政策影响范围可扩散至山东、江苏、河南北部以及山西西部,PM2.5小时均值减少量最大超过50μg/m3.  相似文献   

2.
北京市冬季典型重污染时段PM2.5污染来源模式解析   总被引:5,自引:0,他引:5       下载免费PDF全文
为了探究近年来北京市PM2.5污染区域来源规律和重污染累积过程中PM2.5的生成途径,利用第三代三维空气质量模型CAMx的颗粒物源示踪(PSAT)和过程分析(PA)技术,模拟计算了北京市2013年和2014两次冬季典型重污染时段PM2.5的源-受体关系和物理、化学过程对PM2.5的生成贡献. 结果表明:在区域来源贡献中,随着空气污染等级由优升至严重污染,外地PM2.5贡献率从42.9%升至67.4%,本地贡献率由57.1%降至32.6%,其中外地二次PM2.5贡献率从20.2%升至39.8%,为北京市重污染时段的主要贡献因子;在外地贡献中,廊坊市、山东省、天津市、唐山市的贡献率较大,分别为3.2%~4.7%、3.8%~7.5%、3.6%~5.8%、2.2%~3.2%. PA分析结果表明:在不利气象条件(持续性的逆温层结)下,南边界的输送在重污染过程中起到了重要作用,对ρ(PM2.5)增长的贡献速率可达10 μg/(m3·h). 此外,本地化学转化在重污染时段对ρ(PM2.5)爆发性增长的贡献率也可以达到40.0%,其中特殊天气条件下二次PM2.5生成贡献的显著增加是造成ρ(PM2.5)出现峰值的主要原因. 研究显示,随着污染程度的加重,北京市受区域性污染的影响逐渐加大;在重污染过程中,不利气象条件下的本地化学转化与水平输送对近地层ρ(PM2.5)峰值的出现与维持发挥了重要作用.   相似文献   

3.
为探究临沂市PM2.5和PM10中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM2.5和PM10进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM2.5和PM10中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM2.5中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧...  相似文献   

4.

以江苏省常州市典型纺织工业园区为例,在其周边区域采集PM2.5和PM10样品,通过微波消解的前处理方法,采用电感耦合等离子体质谱仪(ICP-MS)测定样品中的Sb、Co、V、Pb、Cd、As、Cu、Ni和Cr浓度,分析夏、冬两季样品中重金属浓度特征及季节变化规律,利用正定矩阵因子模型(PMF)和美国国家环境保护局(US EPA)健康风险评估模型评估其来源及健康风险。结果表明:该纺织工业园区周边夏、冬两季PM2.5的平均浓度分别为64.41和109.29 μg/m3,PM10的平均浓度分别为89.08和146.65 μg/m3,冬季PM2.5和PM10浓度水平分别是夏季的1.70和1.65倍,均呈冬季大于夏季的特征;纺织工业园区周边大气颗粒物中As出现超标现象,最大超标倍数为GB 3095—2012《环境空气质量标准》参考浓度限值的33.3倍,冬季各金属浓度水平均大于夏季;PMF模型分析表明,纺织工业园区周边区域PM2.5和PM10中各重金属的主要来源为道路扬尘和工业排放复合源,其在夏、冬季的贡献率分别为59.7%、64.2%;健康风险模型表明,暴露在冬季PM2.5和PM10中,儿童的总非致癌风险系数分别为1.13和1.20(>1.00),存在非致癌风险,男性和女性的Cr、As致癌风险指数均超过阈值(10−6~10−4),存在致癌风险,处于不可接受水平。

  相似文献   

5.
重庆主城区大气PM10及PM2.5来源解析   总被引:8,自引:0,他引:8       下载免费PDF全文
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主.   相似文献   

6.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

7.
目前有关中国新疆地区PM2.5化学组分特征及其来源的研究较少,为深入了解新疆典型城市PM2.5的化学组分特征与来源构成,该研究于2016年4个季节代表月份在阜康市5个点位采集PM2.5样品,分析了PM2.5质量浓度及主要化学组分(包括水溶性离子、碳组分和无机元素)。分析结果显示,阜康市PM2.5年均浓度达140.77μg/m3,超标较为严重。各组分浓度由高至低依次是SO42->NH4+>NO3->元素总和>OC>Cl->EC>Na+>K+>F->Ca2+>Mg2+,其中SO42-浓度显著高...  相似文献   

8.
张忠地  邵天杰  黄小刚  卫佩茹 《环境工程》2020,38(2):99-106+134
京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合Arc GIS软件空间插值法、SPSS 21. 0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1) 2017年京津冀地区ρ(PM2.5)年均为64. 4μg/m3,比2016年下降11. 5%,全年达标天数占比为74. 2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92. 4%;...  相似文献   

9.
受不良地形因素影响,加之采暖季散煤燃烧现象严重,陕西省关中地区冬季雾霾天气频发. 自2017年散煤治理相关奖补政策出台以来,区域空气质量状况改善明显. 本研究基于2020年冬季实地调研信息和相关统计数据,评价了2017—2020年关中地区7市(区)的散煤治理成效,采用箱式模型分析了散煤源对PM2.5浓度的贡献情况,并进一步根据泊松回归模型评估了散煤治理带来的健康经济效益. 结果表明:关中地区2017—2020年散煤削减总量达77.79×104 t,西安市与渭南市的散煤削减总量较高,杨陵示范区治理进程最快(散煤替代率达100%). 2017—2020年采暖季散煤源排放的PM2.5浓度降低了7.2 μg/m3,对大气PM2.5浓度的贡献率降低了5.4%,对PM2.5浓度改善的贡献率达17.4%. 2017—2020年关中地区散煤燃烧源PM2.5减排使得居民过早死亡率降低了1.50×10?5〔95%CI (置信区间):3.66×10?6~2.62×10?5〕,降幅达98.2%;发病率(门诊、住院及慢性支气管炎的发生率)降低了4.11×10?4(95%CI:1.71×10?4~6.59×10?4),降幅达98.3%. 研究显示,2017—2020年关中地区散煤综合替代率达98.36%,相应的PM2.5减排量超过0.5×104 t,所带来的健康总受益人数约10 662人,共可获得约1 411.65×106元的经济效益.   相似文献   

10.
近年来,我国大气污染物减排效果明显,空气质量也随之大幅改善. 然而,部分重点区域如京津冀及周边城市群(“2+26”城市)PM2.5年均浓度依然较高,远超GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3). 为实现该目标值,利用京津冀温室气体-空气污染物协同控制综合评估模型(greenhouse gas-air pollution interactions and synergies, GAINS-JJJ),模拟预测了2030年不同政策情景下区域空气质量改善情况,分别量化了结构调整与末端控制(BAT)政策对不同污染物减排的贡献,为“2+26”城市制定空气质量改善路径提供参考. 结果表明:①2017—2030年,由于一系列结构调整政策,如煤改清洁能源、淘汰落后产能(如钢铁、水泥、焦化等)、氮肥减量施用和高挥发有机溶剂替代等措施的实施,以及末端控制政策,如钢铁、水泥与焦化等行业超低排放改造,重型柴油车与非道路移动机械尾气排放标准升级,标准化规模养殖与测土配方施肥技术等技术的推广,“2+26”城市的PM2.5年均浓度值达到34 μg/m3,实现了“美丽中国”的目标要求. ②2030年结构调整情景下,一次PM2.5、SO2、NOx、NH3与NMVOCs(非甲烷类挥发性有机物)的排放相比2017年分别下降了31%、44%、31%、5%和11%;结构调整+末端控制情景下,各项污染物的排放量减排比例分别达到75%、69%、77%、32%与52%. ③末端控制政策对一次PM2.5、NOx、NH3和NMVOCs减排的贡献要大于结构调整政策的贡献;而针对SO2的减排,结构调整政策则发挥了较大的作用. 研究显示,在2030年之前,“2+26”城市的末端控制政策仍具有较大的污染减排潜力,而针对SO2的控制则应将重点从过去的末端减排转向前端的结构性调整措施上.   相似文献   

11.
为准确评估京津冀地区采暖期实施“煤改电”政策带来的健康效益,估算了京津冀地区各区县采暖期“煤改电”政策实施前后PM2.5污染导致的过早死亡人数,并采用支付意愿法计算了相应的健康损失价值.结果表明,京津冀地区“煤改电”政策实施后带来了1 745人(95%CI:1 443~1 907)健康效益和23.78亿元(95%CI:14.50~30.63)经济效益.北京、天津及河北地区的健康效益分别为495人(95%CI:436~554)、 296人(95%CI:238~354)及954人(95%CI:693~1 076).经济效益分别为3.50亿元(95%CI:3.08~3.92)、 3.32亿元(95%CI:2.67~3.96)及16.96亿元(95%CI:8.75~22.75),分别占各地区GDP的0.01%、 0.02%及0.04%. COPD、 LC、 ALRI、 IHD、 STROKE减少的死亡人数分别为187人(95%CI:165~224)、 318人(95%CI:178~458)、 193人(95%CI:115~204)、 506人(95%CI:232~780)...  相似文献   

12.
颜金培  杨林军  张霞  孙露娟  张宇  沈湘林 《环境科学》2008,29(12):3337-3341
实验研究了添加蒸汽和雾化水2种不同烟气调节方式下,操作参数对燃煤可吸入颗粒物凝结长大脱除特性的影响.用电称低压冲击器(ELPI)实时测量脱除前后颗粒数浓度和粒径分布情况.结果表明,蒸汽在颗粒表面凝结能有效促进燃煤PM2.5的脱除;颗粒的分级脱除效率随粒径的增大呈上升的趋势,特别是对于粒径<0.3 μm的颗粒,当蒸汽添加量为0.1 kg/m3,随粒径从0.03 μm增加到0.3 μm,脱除效率提高了60%以上;添加蒸汽时,脱除效率与调节室入口烟气温度无关;而添加雾化水,脱除效率则随调节室入口烟气温度的升高而显著增大,温度从136℃升高到256℃,脱除效率提高了30%以上.烟气温度较高时,利用雾化液滴的蒸发能替代添加蒸汽实现燃煤PM2.5的高效脱除.  相似文献   

13.
运用潜在源贡献分析(PSCF)方法,识别了2018年秋冬季京津冀地区典型城市北京,唐山和石家庄PM2.5的潜在污染源区;基于气象-空气质量模式(WRF-CAMx)和传输通量计算方法定量评估了与其周边省市之间PM2.5的传输贡献,识别了三个典型城市PM2.5的传输路径,揭示了PM2.5传输净通量的垂直分布特征.结果表明,三个城市秋冬季PSCF高值主要集中在河北南部,河南东北部和山西中东部地区;秋冬季PM2.5均以本地贡献影响为主(51.78%~68.40%),外来贡献为辅(31.60%~48.22%),不同季节贡献率有所波动.整个观测期间,近地面主要表现为毗邻城市向北京和石家庄输送PM2.5,而唐山主要表现为向外输送PM2.5,净通量最大值出现在海拔0~50m,其净通量为-99.47t/d.同时鉴别出了一条主要的传输路径,即西南-东北方向.  相似文献   

14.
为了全覆盖、高分辨率和高精度识别京津冀地区大气PM2.5质量浓度时空变化,选取多角度大气校正算法遥感反演的1km AOD为主要预测因子,多种气象要素和土地利用要素为辅助预测因子,构建了混合效应模型+地理加权回归模型的两阶段统计模型,并针对京津冀地区PM2.5污染较严重的特点,模型中引入了AOD2等独特预测因子.通过上述两阶段模型定量预测了研究区2017年1 km2空间分辨率的每日PM2.5质量浓度.结果表明,模型交叉验证的决定系数R2为0.94,斜率为0.95,均方根预测误差为13.14 μg·m-3,在前人基础上预测精度进一步提升,可用于PM2.5浓度时空变化预测与分析.2017年,京津冀地区PM2.5浓度年均值为44.96 μg·m-3,年均值范围在0~89.89 μg·m-3之间.PM2.5浓度时空变化差异性明显,整体上呈现"平原西南部浓度高、平原东北部浓度中等和山区高原浓度低"的空间分布格局以及"冬季浓度高、夏季浓度低和春秋过渡"的季节变化特点.模型预测结果的高时空分辨率可以支持流行病学研究在较小区域的暴露评估和识别小尺度污染源的时空变化,分析发现在大气污染防治行动计划实施以来,污染较严重的冀中南山麓平原区可能出现了重要污染源的空间变化.模型预测与分析结果可以为京津冀大气污染防治提供科学支撑.  相似文献   

15.
京津冀地区钢铁行业污染物排放清单及对PM2.5影响   总被引:1,自引:0,他引:1  
以京津冀地区为研究区域,采取自下而上的方法,建立京津冀地区钢铁行业细化至焦化、烧结和球团、炼铁、炼钢、轧钢等工序的多污染物排放清单.清单估算结果显示,2015年京津冀地区钢铁行业SO2、NOx、TSP、PM10、PM2.5、CO、VOC的排放量分别为38.82、27.23、79.19、53.15、38.68、823.38、26.53万t,其中烧结和球团工序是最主要的污染物排放工序(17.0%~72.0%),其次为炼铁工序(4.6%~42.4%)和轧钢工序(3.5%~35.7%).采用具有污染物来源示踪功能的双层嵌套气象-空气质量模型系统(WRF-CAMx)耦合模型模拟京津冀地区钢铁行业污染物排放对区域大气PM2.5浓度的影响.模拟结果显示:钢铁行业在春夏秋冬这4个季节对京津冀地区PM2.5浓度贡献率分别达到14.0%、15.9%、12.3%、8.7%.各地市中,钢铁行业对唐山市PM2.5影响最大,年均PM2.5浓度贡献率高达41.2%,其次为秦皇岛市、石家庄市、邯郸市,年均PM2.5浓度贡献率分别达到19.3%、15.3%、15.1%.  相似文献   

16.
金囝囡  杨兴川  晏星  赵文吉 《环境科学》2021,42(6):2604-2615
基于2014~2018年京津冀及周边地区MAIAC AOD和PM2.5质量浓度数据,探讨AOD和PM2.5质量浓度的时空差异,并利用线性回归探讨两者之间的相关性.结果表明,PM2.5日均浓度超标天数分别占33%和57%(执行世界卫生组织IT.1和IT.2日均标准值),污染较为严重.Terra、Aqua MAIAC AOD和PM2.5年均浓度均呈下降趋势,PM2.5浓度呈现出冬春季高、夏秋季低的特点,而Terra、Aqua AOD则表现为春夏季高、秋冬季低.PM2.5及AOD的季均和年均浓度均呈现"北低南高"的区域分布特征,高值区主要位于河北南部、山西南部、山东西部以及河南北部,低值区主要位于山西北部、河北北部以及山东东部.PM2.5年均浓度介于27~99μg·m-3,AOD年均值介于0.20~0.69.Aqua AOD与PM2.5浓度的相关性更高,且不同季节Terra、Aqua AOD与PM2.5相关性差异显著,总体均表现为春冬季良好,夏秋季相对较差.对卫星AOD进行垂直和湿度订正后,其与PM2.5的相关性显著提高.  相似文献   

17.
杜沛  王建州 《环境科学》2021,42(3):1255-1267
实施PM2.5污染控制后所带来的居民健康经济效益评估,对推进区域环境空气质量监管、健康预警以及防治等工作具有重要意义.本文采用泊松回归相对危险模型和环境价值评估方法,对2016~2019北京16个辖区年PM2.5污染控制到二级标准限值35 μg·m-3后所带来的健康风险及经济效益进行评估.结果显示,2016~2019年北京及其16个辖区PM2.5浓度、各健康终端效应、经济效益以及人均经济健康效益等均呈现出下降趋势.其中,北京PM2.5浓度值从2016年的73 μg·m-3下降至2019年的42 μg·m-3,年均下降率为16.75%,控制PM2.5污染的健康总受益人数从2016年的439985例(95%置信区间:183987,653476)下降到2019年的77288例(95%置信区间:30483,120905),年平均下降率约为42.67%.健康经济效益占GDP的比重从3.16%(95%置信区间:1.10%,4.73%)下降到0.55%(95%置信区间:0.18%,0.88%),人均健康经济效益从3727.61元(95%置信区间:1303.24,5592.18)下降到906.58元(95%置信区间:295.14,1438.27).此外,由于PM2.5浓度、人口数量和密度以及单位健康终端经济价值的差异使得北京16个辖区的健康经济效益、占GDP比重以及人均效益估算结果各有差异,其中丰台、通州和大兴等远高于其他辖区,健康风险与经济效益问题相对突出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号