首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some physical and mechanical properties of oriented strandboards (OSBs) containing waste tire rubber at various addition levels based on the oven-dry strand weight, using the same method as that used in the manufacture of OSB. Two resin types, phenol–formaldehyde (PF) and polyisocyanate, were used in the experiments. The manufacturing parameters were: a specific gravity of 0.65 and waste tire rubber content (10/90, 20/80 and 30/70 by wt.% of waste tire rubber/wood strand). Average internal bond values of PF-bonded OSB panels with rubber chips were between 17.6% and 48.5% lower than the average of the control samples while polyisocyanate bonded OSBs were 16.5–50.6%. However, water resistance and mechanical properties of OSBs made using polyisocyanate resin were found to comply with general-purpose OSB minimum property requirements of EN 300 Type 1 (1997) values for use in dry conditions at the lowest tire rubber loading level (10%) based on the oven-dry panel weight. The tire rubber improved water resistance of the OSB panel due to its almost hydrophobic property. Based on the findings obtained from this study, we concluded that waste tire rubber could be used for general-purpose OSB manufacturing up to 10% ratio based on the oven-dry panel weight.  相似文献   

2.
This paper mainly focuses on the fabrication process of long fibre reinforced unidirectional thermoplastic composites made using both natural (untreated) treated jute yarns. Jute yarns were wound in layers onto a metallic frame. Polypropylene films were inserted between these layers and compression moulded to fabricate unidirectional jute/PP composite specimens. Static mechanical properties were evaluated from tensile three point bending tests. Pre- post-failure examination were carried out on the test specimens using optical scanning electron microscopy to analyse the test results and investigate the correlations between their impregnation state, processing conditions, mechanical performances and fracture morphologies. For the unidirectional jute/PP film-stacked composites, the results indicated that the processing condition at the moulding temperature of 160°C and moulding pressure of 2.0 MPa for 15 min was ideally suited to obtain optimized properties. Improved wettability of resin melts due to complete matrix fusion at this processing condition facilitated thorough impregnation with minimum microstructural imperfections (microvoids) being generated. Jute/PP composites that contained treated jute yarns have shown superiority in tensile bending properties. Jute yarns polished or coated with PVA/PP (polyvinyl alcohol/polypropylene) must have contributed positively to fibre/matrix interfacial interactions leading to matrix to fibre effective stress transfer, thereby improving their reinforcing effects. Tensile strength and modulus of PP resin increased by approximately 285% and 388%, respectively, due to 50 wt% reinforcement by natural jute yarns. Further improvements in strength and modulus were achieved by approximately 14% and 10%, respectively, when treated yarns were used . The maximum bending stress modulus of jute/PP composites containing untreated yarns were approximately 190% and 460% higher than those of the virgin PP materials, and bending properties were improved by further 11% and 23%, respectively, due to coating treatments on the yarn surface.  相似文献   

3.
High density polyethylene (HDPE)/bamboo composites with different nanoclay and maleated polyethylene (MAPE) contents were fabricated by melt compounding. The compounding characteristics, clay dispersion, HDPE crystallization, and mechanical properties of the composites were studied. The equilibrium torque during compounding decreased with use of clay masterbatch and increased with the addition of MAPE. The X-ray diffraction (XRD) data showed that the clay was exfoliated only when 1% clay was added to pure HDPE without MAPE. For HDPE/bamboo systems, MAPE was necessary to achieve clay exfoliation. For pure HDPE system, both dynamic and static bending moduli increased, while impact strength decreased with increased clay loading. For the HDPE/bamboo fiber composites, tensile strength, bending modulus and strength were improved with the use of MAPE. The use of the clay in the system led to reduced mechanical properties. Techniques such as pre-coating fibers with clay–MAPE mixture are needed to enhance the synergetic effect of the clay and bamboo fiber on the composite properties in the future study.  相似文献   

4.
Biodegradable composites can be produced by the combination of biodegradable polymers (BP) as matrix and vegetal fibers as reinforcement. Composites of a commercial biodegradable polymer blend and curauá fibers (loaded at 5, 15 and 20 wt%) were prepared by melt mixing in a twin-screw extruder. Chemical treatments such as alkali treatment of the fiber and addition of maleic anhydride grafted polypropylene (MA-g-PP) as coupling agent were performed to promote polymer/fiber interfacial adhesion so that mechanical performance can be improved. The resulting composites were evaluated through hardness, melt flow index and tensile, flexural and impact strengths as well as water absorption. Thermal analysis and Fourier transform infrared spectroscopy were also employed to characterize the composites. The polymer/fiber interface was investigated through scanning electron microscopy analysis. The biodegradability of composites was evaluated by compost-soil burial test. The addition of curauá fiber promoted an increase in the mechanical strengths and composites treated with 2 wt% MA-g-PP with 20 wt% curauá fiber showed an increase of nearly 75% in tensile and 56% in flexural strengths besides an improvement in impact strength with respect to neat polymer blend. Nevertheless, treated composites showed an increase in water absorption and biodegradation tests showed that the addition of fiber retards degradation time. The retained mass of BP/20 wt% fiber composite with MA-g-PP and neat BP was 68 and 26%, respectively, after 210 days of degradation test.  相似文献   

5.
The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.  相似文献   

6.
The aim of the present study is to investigate mechanical and morphological properties of pineapple leaf fibres (PALF) reinforced phenolic composites and its comparison with kenaf fibre (KF)/phenolic composites. Mechanical properties (tensile, flexural and impact) of untreated and treated PALF phenolic composites at different fibre loading were investigated. Tensile, flexural and impact properties of PALF and kenaf/phenolic composites were analyzed as per ASTM standard. Morphological analysis of tensile fracture samples of composites was carried out by scanning electron microscopy. Obtained results indicated that treated PALF/phenolic composites at 50% PALF loading exhibited better tensile, flexural and impact properties as compared to other untreated PALF/phenolic composites. Treated kenaf/phenolic composites at 50% fibre loading showed better tensile, flexural and impact properties than untreated kenaf/phenolic composite. It is concluded that treated 50% fibre loading kenaf and PALF/phenolic composites showed better mechanical properties than untreated kenaf and PALF/phenolic composites due to good fibre/matrix interfacial bonding. Results obtained in this study will be used for the further study on hybridization of PALF and KF based phenolic composites.  相似文献   

7.
This paper investigates and compares the performances of polylactic acid (PLA)/kenaf (PLA-K) and PLA/rice husk (PLA-RH) composites in terms of biodegradability, mechanical and thermal properties. Composites with natural fiber weight content of 20% with fiber sizes of less than 100 μm were produced for testing and characterization. A twin-screw extrusion was used to compound PLA and natural fibers, and extruded composites were injection molded to test samples. Flexural and Izod impact test, TGA, soil burial test and SEM were used to investigate properties. All results were compared to a pure PLA matrix sample. The flexural modulus of the PLA increased with the addition of natural fibers, while the flexural strength decreased. The highest impact strength (34 J m−1), flexural modulus (4.5 GPa) and flexural strength (90 MPa) were obtained for the composite made of PLA/kenaf (PLA-K), which means kenaf natural fibers are potential to be used as an alternative filler to enhance mechanical properties. On the other hand PLA-RH composite exhibits lower mechanical properties. The impact strength of PLA has decreased when filled with natural fibers; this decrease is more pronounced in the PLA-RH composite. In terms of thermal stability it has been found that the addition of natural fibers decreased the thermal stability of virgin PLA and the decrement was more prominent in the PLA-RH composite. Biodegradability of the composites slightly increased and reached 1.2 and 0.8% for PLA-K and PLA-RH respectively for a period of 90 days. SEM micrographs showed poor interfacial between the polymer matrix and natural fibers.  相似文献   

8.
Three to four billion pounds of chicken feathers are wasted in the United States annually. These feathers pose an environmental challenge. In order to find a commercial application of these otherwise wasted feathers, composites have been prepared from feathers. Flexural, impact resistance, and sound dampening properties of composites from chicken feather fiber (FF) and High Density Polyethylene/Polypropylene (HDPE/PP) fiber have been investigated and compared with pulverized chicken quill-HDPE/PP, and jute-HDPE/PP composites. Sound dampening by FF composites was 125% higher than jute and similar to quill although mechanical properties were inferior to the latter two. In ground form, FF and jute composite properties were similar except for 34% higher modulus of jute; under the same formulation and processing conditions, ground FF composites had nearly 50% lower mechanical properties compared with ground quill composites. It was found that voids and density of composites have effect on mechanical and sound dampening properties; however, no direct relationship was found between mechanical properties and sound dampening.  相似文献   

9.
Natural rubber (NR) with polycaprolactone (PCL) core–shell (NR-ad-PCL), synthesized by admicellar polymerization, was acted as an impact modifier for poly(lactic acid) (PLA). PLA and NR-ad-PCL were melt-blended using a co-rotating twin screw extruder. The morphology of PLA/NR-ad-PCL blends showed good adhesion as smooth boundary around rubber particles and PLA matrix. Only 5 wt% of rubber phase, NR-ad-PCL was more effective than NR to enhance toughness and mechanical properties of PLA. The contents of the NR-ad-PCL were varied from 5, 10, 15 and 20 wt%. From thermal results, the incorporation of the NR-ad-PCL decreased the glass transition temperature and slightly increased degree of crystallinity of PLA. Mechanical properties of the PLA/NR-ad-PCL blends were investigated by dynamic mechanical analyser, pendulum impact tester and universal testing machine for tension and flexural properties. The increasing NR-ad-PCL contents led to decreasing Young’s and storage moduli but increasing loss modulus. Impact strength and elongation at break of the PLA/NR-ad-PCL blends increased with increasing NR-ad-PCL content up to 15 wt% where the maximum impact strength was about three times higher than that of pure PLA and the elongation at break increased to 79%.  相似文献   

10.
Fabrication of complex injection molded parts often involves the use of multiple gates. In such situations, polymer melts from different gates meld to form the molded part (weld line). This paper reports on the fabrication and characterization of the mechanical and morphological properties of short fiber reinforced jute/poly butylene succinate (PBS) biodegradable composites. The effect of a dual gated mold in the fabrication of welded specimens was a key focus of the investigation. It was observed that incorporation of jute fiber (10 wt%) conferred drastic changes on the stress–strain properties of the matrix as the elongation at break (EB), dropped from 160% in the matrix to just 10% in the composite. The tensile strength of the composite was lower than that of the matrix. However, it is noteworthy that the tensile modulus of the composite increased. Bending test also revealed that both bending strength and modulus increased with the incorporation of jute. Morphological studies of the tensile fracture surface using SEM revealed two types of failure mode. Ductile failure was indicated by plastic deformation at the initiation of fracture followed by brittle failure. The good interfacial bonding indicated between jute and PBS was attributed to positive interaction between the two polar polymers. A comparison of the non-weld and weld-line samples revealed that the weld-line composites have better mechanical integrity than the corresponding polymer matrix with weld line. The results also revealed that elongation at break and toughness are most sensitive to the presence of the weld-line whereas flexural properties are least sensitive.  相似文献   

11.
The evaluation method of biomass carbon ratio of polymer composite samples including organic and inorganic carbons individually was investigated. Biodegradable plastics and biobased plastics can have their mechanical properties improved by combining with inorganic fillers. Polymer composites consisting of biodegradable plastics and carbonate were prepared by two different methods. Poly(lactic acid) (PLA) composite was prepared by synthesis from l-lactide with catalyst and calcium carbonate (CaCO3) powders from lime. Poly(butylene succinate) (PBS) composite was prepared by hot-pressing the mixture of PBS powder and CaCO3 powders from oyster shells. The mechanical properties of composite samples were investigated by a tensile test and a compression test using an Instron type mechanical tester. Tensile test with a dumbbell shape specimen was performed for PBS composite samples and compression test with a column shape specimen for PLA composite samples. Strength, elastic modulus and fracture strain were obtained from the above tests. Biomass carbon ratio is regulated in the American Standards for Testing and Materials (ASTM). In ASTM standards on biomass carbon ratio, it is required that carbon atoms from carbonates, such as CaCO3, are omitted. Biomass carbon ratio was evaluated by ratio of 14C to 12C in the samples using Accelerator Mass Spectrometry (AMS). The effect of pretreatment, such as oxidation temperature and reaction by acid, on results of biomass carbon ratio was investigated. Mechanical properties decrease with increasing CaCO3 content. The possibility of an evaluation method of biomass carbon ratio of materials including organic and inorganic carbons was shown.  相似文献   

12.
This paper presents the results on a study to use paper mill sludge for particleboard production. Single-layer board and three-layer board, with paper sludge on the surface, were fabricated. Four levels of mixing ratios of paper sludge to wood particles (0:100, 15:85, 30:70, and 45:55) were used. The boards were produced with 3% and 4% methylene diphenyl diisocyanate (MDI), and 10% and 12% urea-formaldehyde (UF) adhesives. The bending and shear strengths, water absorption, and thickness swelling of the boards were investigated. The results indicated that the mechanical properties of the boards were negatively affected by the paper sludge amount. Overall, UF-bonded particleboards gave superior mechanical performance, water resistance, and thickness swell than MDI-bonded particleboards. The strengths of the UF-bonded board decreased much more than those of MDI-bonded board as paper sludge content increased. The three-layer boards made from 15% paper sludge with 12% UF satisfied fully the minimum requirements set by EN, ASTM D 1037-99, and ANSI A208.1 standards for general uses.  相似文献   

13.
EVA/PLA blends compatibilized with EVA-g-PLA grafted copolymers synthesized by reactive extrusion, through transesterification reaction between ethylene-vinyl-acetate (EVA) and polylactide (PLA) using titanium propoxide (Ti(OPr)4) as catalyst, were characterized when exposed to different environments. Stability to UV radiation was assessed exposing the samples to a Xenon lamp, which simulates the sun UV spectrum and the biodegradability was evaluated by biochemical oxygen demand (BOD) in a closed respirometer. Exposed samples were removed periodically and analyzed by several analytical techniques, such as, FTIR, DSC, rheology and tensile tests. The results obtained evidenced that UV radiation induces structural modifications, which affect substantially rheological and mechanical properties. Moreover, the blend with higher amount of copolymer exhibits lower photo durability and greater biodegradability. From the environmental point of view, these new materials are very promising for application with short lifetime, like packaging.  相似文献   

14.
With an industrial trend of going green, the use of natural fibers in polymer composites is growing rapidly, especially in the automotive industry. The objectives of this research are to investigate mechanical performance of kenaf/polypropylene nonwoven composites (KPNCs) in production of automotive interior parts, and to develop preliminary linear models for quantifying elastic range of the KPNCs under various loading conditions. Using polypropylene (PP) fiber as bonding fiber, the KPNCs were fabricated with 50/50 blend ratio by weight. Unlike the manufacturing method of fiber reinforced plastics, all KPNCs were produced by carding and needle-punching techniques and thermally bonded by a panel press with 3-mm thickness gauge. Mechanical properties of the KPNCs in terms of uniaxial tensile, open-hole tensile, tensile at different strain rates, flexural, and in-plane shear were measured instrumentally. It was found that sample which was processed at higher temperature (230?°C) but shorter time (60?s) had the best mechanical performance. KPNCs were relatively insensitive to the notch but sensitive to strain rates. The linear elastic finite element model of KPNCs agreed well with the experimental results in the valid strain range of 0?C0.5?% for uniaxial tensile test and 0?C1?% for flexural test.  相似文献   

15.
In this work, performance of cow dung (CD) reinforced poly(lactic acid) (PLA) biocomposites was investigated for the potential use in load bearing application. CD of average 4 mm size was blended with PLA at different CD ratios (0–50 wt%) and their effects on the biocomposite properties were studied. The results showed an improvement in the flexural properties, while the tensile and impact strength dropped by 20 and 28% with the addition of 50% CD. The decline in the tensile and impact strength was due to micro-cracking and voids formation at higher CD content. Also, the incorporation of CD slightly decreased the thermal stability of the biocomposite. However, dynamic mechanical properties of the biocomposites generally improved. SEM analysis of tensile and impact fractured surfaces indicated that the CD had a reasonable adhesion with matrix. Moreover, the SEM micrographs of soil burial studies showed an accelerated degradation of higher CD wt% biocomposites.  相似文献   

16.
Blends based on different ratios of starch (35–20%) and plasticizer (sugar; 0–15%) keeping the amount of poly(vinyl alcohol) (PVA) constant, were prepared in the form of thin films by casting solutions. The effects of gamma-irradiation on thermal, mechanical, and morphological properties were investigated. The studies of mechanical properties showed improved tensile strength (TS) (9.61 MPa) and elongation at break (EB) (409%) of the starch-PVA-sugar blend film containing 10% sugar. The mechanical testing of the irradiated film (irradiated at 200 Krad radiation dose) showed higher TS but lower EB than that of the non-radiated film. FTIR spectroscopy studies supported the molecular interactions among starch, PVA, and sugar in the blend films, that was improved by irradiation. Thermal properties of the film were also improved due to irradiation and confirmed by thermo-mechanical analysis (TMA), differential thermo-gravimetric analysis (DTG), differential thermal analysis (DTA), and thermo-gravimetric analysis (TGA). Surface of the films were examined by scanning electron microscope (SEM) image that supported the evidence of crosslinking obtained after gamma irradiation on the film. The water up-take and degradation test in soil of the film were also evaluated. In this study, sugar acted as a good plasticizing agent in starch/PVA blend films, which was significantly improved by gamma radiation and the prepared starch-PVA-sugar blend film could be used as biodegradable packaging materials.  相似文献   

17.
The main objective of this research was to study the potential of waste agricultural residues such as sunflower stalk, corn stalk and bagasse fibers as reinforcement for thermoplastics as an alternative to wood fibers. The effects of two grades (Eastman G-3003 and G-3216) of coupling agents on the mechanical properties were also studied. In the sample preparation, one level of fiber loading (30 wt.%) and three levels of coupling agent content (0, 1.5 and 2.5 wt.%) were used. For overall trend, with addition of both grades of the coupling agents, tensile, flexural and impact properties of the composites significantly improved, as compared with untreated samples. In addition, morphological study revealed that the positive effect of coupling agent on interfacial bonding. The composites treated with G-3216 gave better results in comparison with G-3003. This could be caused by the high melt viscosity of G-3003. In general, bagasse fiber showed superior mechanical properties due to its chemical characteristics.  相似文献   

18.
The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g?1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.  相似文献   

19.
The aim of this study was to determine thermal and mechanical properties and applicability of ground chestnut shell waste as a filler for poly(lactic acid) composites. The used amount of filler was ranging from 2.5 to 30 wt%. Spectroscopic analysis of composites and its ingredients was conducted by means of FT-IR method. The mechanical and thermal properties of the composites were determined in the course of static tensile test, Dynstat impact strength test, DMTA analysis, and DSC method. The fractured surface morphology of biocomposites was evaluated by SEM analysis. Incorporation of the filler influenced the overall mechanical properties of the composites characterized by high stiffness and lowered impact resistance. Fabricated composites with different amounts of non-reactive natural waste filler exhibited acceptable mechanical and thermal properties. Therefore, these composites can be used as eco-friendly, biodegradable materials for low-demanding applications.  相似文献   

20.
Shellac (SL) films were prepared by casting and were grafted with various acrylic monomers of different functionalities using gamma radiation. Different formulations of shellac with varying concentrations (3, 5 and 7%) of these acrylic monomers such as 2-hydroxyethyl methacrylate (HEMA), 2-ethylhexyl acrylate (EHA) and 1,4-butanediol diacrylate (BDDA) in methanol were prepared. The pure shellac and other treated films were then irradiated under gamma radiation (Co-60) at different doses (0.5–5 kGy) at a dose rate of 3.5 kGy/h where 1 Gy = 1 J/kg = 100 rads. The mechanical properties like tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. The mechanical properties of the irradiated shellac films demonstrated superior values. Among the formulations, shellac grafted with BDDA (SL-g-BDDA) showed the highest TS and Eb values which were 543 and 168% higher than those of raw shellac films, respectively. The water uptake behavior of raw and treated films was also studied. The raw film showed 11% water uptake but HEMA containing film showed 67%. In the soil burial test, HEMA containing shellac film was rapidly degraded than other raw, EHA and BDDA grafted films. Thermal properties indicated that grafting of acrylic monomers decreased the melting temperature of the pure shellac films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号