首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two pulp and paper industrial wastes, lime mud (LM) and recovery boiler ash (RB), have low moisture contents, low heavy metal contaminations and contain various carbonate compounds which contribute to a high pH. Metal finishing wastewater (MF-WW) has a low pH, high levels of TDS and high contaminations from Cr, Cu, Pb and Zn. The heavy metals from MF-WW were removed by sorption and precipitation mechanisms. LM gave better results in removing heavy metals from MF-WW than RB. At a reaction time of 45 min, the maximum removal efficiencies for Cr (93%) and Cu (99%) were obtained at 110 g L−1 of LM, but at 80 g L−1 for Pb (96%) and Zn (99%). Treatment with LM gives a higher sludge volume than with RB. However, the leachability of heavy metals from LM is lower. Leachability of heavy metals in the sediment for all selected treatment conditions is within government standards.  相似文献   

2.
In this study, sugar cane residue or bagasse was used for removal of toxic metal ions from wastewater of an electroplating factory located in northeast Brazil. Prior acid treatment increased the adsorption efficacies in batch wise experiments. The microstructure of the material before and after the treatment was investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Column operations showed that removals of Cu2+, Ni2+ and Zn2+ from wastewater (in the absence of cyanide) were 95.5%, 96.3.0%, and 97.1%, respectively. Regeneration of the adsorbent obtained in acid indicated that the efficiencies decreased only after the fourth cycle of re-use. Acid-treated sugar cane bagasse can be considered a viable alternative to common methods to remove toxic metal ions from aqueous effluents of electroplating industries.  相似文献   

3.
Use of cattails in treating wastewater from a Pb/Zn mine   总被引:2,自引:0,他引:2  
This article describes the use of a combined treatment system, which includes an aquatic treatment pond withTypha latifolia Linn. (Typhaceae) as the dominant species and a stabilization pond, to treat the wastewater from a Pn/Zn mine at Shaoguan, Guangdong Province, China. In 1983, it was noted thatT. latifolia bloomed in areas affected by the wastewater emitted from the mine, hence a combined purification system was subsequently built. The influent contained high levels of total suspended solids (4635 mg/liter), chemical oxygen demand (14.5 mg/liter) as well as Pb (1.6 mg/liter) and Zn (1.9 mg/liter). The results of the effluent after treatment showed that the total suspended solids, chemical oxygen demand, Pb, and Zn had been reduced by 99%, 55%, 95%, and 80% respectively. The results of plant tissue analysis indicled thatT. latifolia assimilated significant amounts of Pb and Zn, especially in the root portion. During 1986 several species of algae and fish were present in the pond, usually with a higher density in areas containing lower metal concentrations in the water. Paper was presented in part at the conference “The Use of Constructed Wetlands in Water Pollution Control” held 24–28 September 1990, Cambridge, UK.  相似文献   

4.
This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.  相似文献   

5.
Golf courses are vulnerable to phosphate (PO) and pesticide loss by infiltration of the sandy, porous grass rooting media used and through subsurface tile drainage. In this study, an effort was made to remove PO, chlorothalonil, mefenoxam, and propiconazole in a golf green's drainage water with a filter blend comprised of industrial byproducts, including granulated blast furnace slag, cement kiln dust, silica sand, coconut shell-activated carbon, and zeolite. To test this filter media, two 6-h storm events were simulated by repeat irrigation of the golf green after PO and pesticide application. Drainage flows ranged from 0.0034 to 0.6433 L s throughout the course of the simulations. A significant decrease in the chlorothalonil load for the experimental run (with filter media) was observed compared with the control (without filter media) ( < 0.05). In general, percent reductions in chlorothalonil were very high (>80%) near peak flows. In contrast, filter media was not effective in removing PO, mefenoxam, or propiconazole ( > 0.05). Instead, it appears that the filter blend added PO to the effluent above flow rates of 0.037 L s. Overall, flow rate, the amount of filter media used, and contaminant properties may have influenced the filter media's ability to remove contaminants. More research is needed to determine the optimal blend and configuration for the filter media to remove significant amounts of all contaminants investigated.  相似文献   

6.
Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution.  相似文献   

7.
High levels of accumulated phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty into the Chesapeake Bay. The objective of this study was to design, construct, and monitor a within-ditch filter to remove dissolved P, thereby protecting receiving waters against P losses from upstream areas. In April 2007, 110 Mg of flue gas desulfurization (FGD) gypsum, a low-cost coal combustion product, was used as the reactive ingredient in a ditch filter. The ditch filter was monitored from 2007 to 2010, during which time 29 storm-induced flow events were characterized. For storm-induced flow, the event mean concentration efficiency for total dissolved P (TDP) removal for water passing through the gypsum bed was 73 ± 27% confidence interval (α = 0.05). The removal efficiency for storm-induced flow by the summation of load method was 65 ± 27% confidence interval (α = 0.05). Although chemically effective, the maximum observed hydraulic conductivity of FGD gypsum was 4 L s(-1), but it decreased over time to <1 L s(-1). When bypass flow and base flow were taken into consideration, the ditch filter removed approximately 22% of the TDP load over the 3.6-yr monitoring period. Due to maintenance and clean-out requirements, we conclude that ditch filtration using FGD gypsum is not practical at a farm scale. However, we propose an alternate design consisting of FGD gypsum-filled trenches parallel to the ditch to intercept and treat groundwater before it enters the ditch.  相似文献   

8.
In recent years, the application of heterogeneous photocatalytic water purification processes has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible-light spectrum. This paper aims to review and summarize the recent works on the titanium dioxide (TiO(2)) photocatalytic oxidation of pesticides and phenolic compounds, predominant in storm and wastewater effluents. The effects of various operating parameters on the photocatalytic degradation of pesticides and phenols are discussed. Results reported here suggest that the photocatalytic degradation of organic compounds depends on the type and composition of the photocatalyst and, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, catalyst application mode, and calcination temperature in the water environment. A substantial amount of research has focused on the enhancement of TiO(2) photocatalysis by modification with metal, non-metal and ion doping. Recent developments in TiO(2) photocatalysis for the degradation of various pesticides and phenols are also highlighted in this review. It is evident from the literature survey that photocatalysis has good potential to remove a variety of organic pollutants. However, there is still a need to determine the practical utility of this technique on a commercial scale.  相似文献   

9.
Phenol and substituted phenols are toxic organic pollutants present in tannery waste streams. Environmental legislation defines the maximum discharge limit to be 5–50 ppm of total phenols in sewers. Thus the efforts to develop new efficient methods to remove phenolic compounds from wastewater are of primary concern. The present work aims at the use of a modified green macro alga (Caulerpa scalpelliformis) as a biosorbent for the removal of phenolic compounds from the post-tanning sectional stream. The effects of initial phenol concentration, contact time, temperature and initial pH of the solution on the biosorption potential of macro algal biomass have been investigated. Biosorption of phenol by modified green macro algae is best described by the Langmuir adsorption isotherm model. Biosorption kinetics of phenol onto modified green macro algal biomass were best described by a pseudo second order model. The maximum uptake capacity was found to be 20 mg of phenol per gram of green macro algae. A Boyd plot confirmed the external mass transfer as the slowest step involved in the biosorption process. The average effective diffusion coefficient was found to be 1.44 × 10−9 cm2/s. Thermodynamic studies confirmed the biosorption process to be exothermic.  相似文献   

10.
The cupuassu shell (Theobroma grandiflorum) which is a food residue was used in its natural form as biosorbent for the removal of C.I. Reactive Red 194 and C.I. Direct Blue 53 dyes from aqueous solutions. This biosorbent was characterized by infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption curves. The effects of pH, biosorbent dosage and shaking time on biosorption capacities were studied. In acidic pH region (pH 2.0) the biosorption of the dyes were favorable. The contact time required to obtain the equilibrium was 8 and 18 h at 298 K, for Reactive Red 194 and Direct Blue 53, respectively. The Avrami fractionary-order kinetic model provided the best fit to experimental data compared with pseudo-first-order, pseudo-second-order and chemisorption kinetic adsorption models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Radke-Prausnitz isotherm models. For both dyes the equilibrium data were best fitted to the Sips isotherm model.  相似文献   

11.
Phosphorus-immobilizing amendments can be useful in minimizing P leaching from high P soils that may be irrigated with wastewater. This study tested the P-binding ability of various amendment materials in a laboratory incubation experiment and then tested the best amendment in a field setup using drainage lysimeters. The laboratory experiment involved incubating 100-g samples of soil (72 mg kg(-1) water-extractable phosphorus, WEP) with various amendments at different rates for 63 d at field moisture capacity and 25 degrees C. The amendments tested were alum [Al2SO4)3.14H2O], ferric chloride (FeCl3), calcium carbonate (CaCO3), water treatment residual (WTR), and sugarbeet lime (SBL). Ferric chloride and alum at rates of 1.5 and 3.9 g kg(-1), respectively, were the most effective amendments that decreased WEP to 20 mg kg(-1), below which leaching has previously been shown to be low. Alum (1.3 kg m(-2)), which is less sensitive to redox conditions, was subsequently tested under field conditions, where it reduced WEP concentration in the 0- to 0.15-m layer from 119 mg kg(-1) on Day 0 to 36.1 mg kg(-1) (85% decrease) on Day 41. Lysimeter breakthrough tests using tertiary-treated potato-processing wastewater (mean total phosphorus [TP] = 3.4 mg L(-1)) showed that alum application reduced leachate TP and soluble reactive phosphorus (SRP) concentrations by 27 and 25%, respectively. These results indicate that alum application may be an effective strategy to immobilize P in high P coarse-textured soils. The relatively smaller decreases in TP and SRP in the leachate compared to WEP suggest some of the P may be coming from depths below 0.2 m. Thus, to achieve higher P sequestration, deeper incorporation of the alum may be necessary.  相似文献   

12.
In this article, the technical feasibility of the use of activated carbon, synthetic resins, and various low-cost natural adsorbents for the removal of phenol and its derivatives from contaminated water has been reviewed. Instead of using commercial activated carbon and synthetic resins, researchers have worked on inexpensive materials such as coal fly ash, sludge, biomass, zeolites, and other adsorbents, which have high adsorption capacity and are locally available. The comparison of their removal performance with that of activated carbon and synthetic resins is presented in this study. From our survey of about 100 papers, low-cost adsorbents have demonstrated outstanding removal capabilities for phenol and its derivatives compared to activated carbons. Adsorbents that stand out for high adsorption capacities are coal-reject, residual coal treated with H3PO4, dried activated sludge, red mud, and cetyltrimethylammonium bromide-modified montmorillonite. Of these synthetic resins, HiSiv 1000 and IRA-420 display high adsorption capacity of phenol and XAD-4 has good adsorption capability for 2-nitrophenol. These polymeric adsorbents are suitable for industrial effluents containing phenol and its derivatives as mentioned previously. It should be noted that the adsorption capacities of the adsorbents presented here vary significantly depending on the characteristics of the individual adsorbent, the extent of chemical modifications, and the concentrations of solutes.  相似文献   

13.
Geographic information systems (GIS) use is presented in the problem of sitting areas for construction of natural systems such as stabilization ponds (SPs) for domestic wastewater treatment. For this purpose, several variables, such as topography, land use, type of geological formation, distance to major rivers or lakes, distance to existing cities and villages, existence of environmentally protected areas, mean minimum monthly temperatures and required wastewater effluent characteristics were analyzed with the GIS, in order to accept or reject a particular area within a region. The method is applied in the region of Thrace (Northeast Greece) at the municipal level. The required area for SP systems was calculated in each of the 36 municipalities of Thrace (including two islands, Thassos and Samothraki) as a function of the population of each municipality, temperature and local wastewater effluent discharge criteria. Based on the GIS analysis, suitable locations were identified in each municipality first, and then the total required surface area of these systems was compared to the available surface area of each municipality, in order to decide whether SP systems could be a viable solution to the wastewater management problem in the particular region. In that way the present methodology offers a fast and simple method to check the suitability of new areas for construction of such systems.  相似文献   

14.
Synthesis of distributed wastewater treatment plants (WTPs) has focused on cost reduction, but never on the reduction of environmental impacts. A mathematical optimization model was developed in this study to synthesize existing distributed and terminal WTPs into an environmentally friendly total wastewater treatment network system (TWTNS) from a life cycle perspective. Life cycle assessment (LCA) was performed to evaluate the environmental impacts of principal contributors in a TWTNS. The LCA results were integrated into the objective function of the model. The mass balances were formulated from the superstructure model, and the constraints were formulated to reflect real wastewater treatment situations in industrial plants. A case study validated the model and demonstrated the effect of the objective function on the configuration and environmental performance of a TWTNS. This model can be used to minimize environmental impacts of a TWTNS in retrofitting existing WTPs in line with cleaner production and sustainable development.  相似文献   

15.
This paper presents results from field studies carried out during the 1993-1998 Australian cotton (Gossypium hirsutum L.) seasons to monitor off-target droplet movement of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) insecticide applied to a commercial cotton crop. Averaged over a wide range of conditions, off-target deposition 500 m downwind of the field boundary was approximately 2% of the field-applied rate with oil-based applications and 1% with water-based applications. Mean airborne drift values recorded 100 m downwind of a single flight line were a third as much with water-based application compared with oil-based application. Calculations using a Gaussian diffusion model and the U.S. Spray Drift Task Force AgDRIFT model produced downwind drift profiles that compared favorably with experimental data. Both models and data indicate that by adopting large droplet placement (LDP) application methods and incorporating crop buffer distances, spray drift can be effectively managed.  相似文献   

16.
The objective of this work was to study the technological feasibility of treating wastewater from a personal care industry (PCI-WW) in a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass on polyurethane foam. An assessment was made on how system efficiency and stability would be affected by: increasing organic load; supplementation of nutrients and alkalinity; and different feed strategies. The AnSBBR operated with 8-h cycles, stirring speed of 400 rpm, temperature of 30 °C, and treated with 2.0 L wastewater per cycle. First the efficiency and stability of the AnSBBR were studied when submitted to an organic loading rate (OLR) of 3.1–9.4 gCOD/(L d), and when the PCI-WW was supplemented with nutrients (sucrose, urea, trace metals) and alkalinity. The AnSBBR was shown to be robust and presented stability and removal efficiency exceeding 90%. At an OLR of 12.0 gCOD/(L d) efficiency became difficult to maintain due to the presence of commercial cleansers and disinfectants in the wastewater lots. In a subsequent stage the AnSBBR treated the wastewater supplemented with alkalinity, but with no nutrients at varying feed strategies and maintaining an OLR of approximately 9.0 gCOD/(L d). The first strategy consists of feeding 2.0 L of the influent batchwise [OLR of 9.4 gCOD/(L d)]. In the second 1.0 L of influent was fed-batchwise and an additional 1.0 L was fed fed-batchwise [OLR of 9.2 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was maintained but supplied in different periods. In the third strategy 1.0 L of treated effluent was maintained in the reactor and 1.0 L of influent was fed fed-batchwise [OLR of 9.0 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was different but the feed period was the same and the OLR was maintained by increasing the influent concentration. Comparison of the first and second strategies revealed that organic matter removal efficiency was unaffected (exceeding 90%). The third strategy resulted in a reduction in average removal efficiency from 91 to 83% when compared to the first one. A kinetic study resulted in first order kinetic parameters ranges from 0.42 to 1.46 h−1 at OLRs from 3.1 to 12.0 gCOD/(L d), respectively, and the second feed strategy [OLR of 9.2 gCOD/(L d)] was shown to be the most favorable.  相似文献   

17.
The use of low-cost adsorbents was investigated as a replacement for current costly methods of removing metals from aqueous solution. Removal of copper (II) from aqueous solution by different adsorbents such as shells of lentil (LS), wheat (WS), and rice (RS) was investigated. The equilibrium adsorption level was determined as a function of the solution pH, temperature, contact time, initial adsorbate concentration and adsorbent doses. Adsorption isotherms of Cu (II) on adsorbents were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. The maximum adsorption capacities for Cu (II) on LS, WS and RS adsorbents at 293, 313 and 333 K temperature were found to be 8.977, 9.510, and 9.588; 7.391, 16.077, and 17.422; 1.854, 2.314, and 2.954 mg g(-1), respectively. The thermodynamic parameters such as free energy (delta G0), enthalpy (delta H0) and entropy changes (delta S0) for the adsorption of Cu (II) were computed to predict the nature of adsorption process. The kinetics and the factors controlling the adsorption process were also studied. Locally available adsorbents were found to be low-cost and promising for the removal of Cu (II) from aqueous solution.  相似文献   

18.
The aim of this work was to examine the performance of a sand filter in treating modern olive mill (OMW) effluents after dilution with domestic wastewater on a one-to-one basis. The experimental pilot consisted of a column of opaque PVC, and the sand filter was filled with 50 cm of sand and 10 cm of gravel in the top and the bottom of the filter. The alimentation (4 cm/day) was done sequentially following a 1 day wet/3 days dry cycle. The OMW effluent was very acidic with a pH of 4.12, and had high concentrations of phenolic compounds (7.2 g/L) and total chemical oxygen demand (65 g/L). The percolation of the diluted OMW through the sand filters caused an increase in pH from 4.84 to 8.25 and a 90% removal of total suspended solids. The sand filter treatment also led to important reductions in organic matter (90% of total COD, 83% of dissolved COD and 92% of phenolic compounds) and nutrients (91% of Kjeldahl-nitrogen, 97% of ammonia-nitrogen, 99% of nitrate-nitrogen and 99% of phosphates). The flow rate became very low indicating clogging of the sand pores after 10 weeks. HPLC analysis of the diluted OMW before and after passage through the sand filter showed an important reduction in the toxic monomeric compounds after the treatment.  相似文献   

19.
渗透蒸发技术是一种新型膜分离技术,主要用于有机溶剂脱水、水中脱除有机物与有 机物之间的分离。本文主要介绍渗透蒸发技术在脱除水中挥发性有机污染物方面的应用。  相似文献   

20.
The Hsinchu Science-based Industrial Park (HSIP) is the hi-tech manufacturing hub of Taiwan. Wastewater from the HSIP contains numerous nano-sized silicate particles whose size distributions peak at 2 and 90 nm. A 3-5 mg l(-1) as Al dose of polyaluminum chloride (PACl) was used in the field to coagulate these particles, but the removal efficiency was low. Laboratory scale tests indicated that although PACl coagulation removed 52% of the turbidity and 48% of the chemical oxygen demand (COD) from water, its effect on nano-particle removal was minimal. About 58% of the soluble COD was associated with colloidal Si particles. A light scattering test and transmission electron microscopy (TEM) demonstrated that the nano-particles agglomerated in approximately linear aggregates of sizes 100-300 nm. Prolonged contact between residual PACl and the nano-particles generated large aggregates with sizes of up to 10 microm and a fractal dimension of 2.24-2.63. The results presented herein should be of interest in the processing of "high-tech" wastewater that contains nanosized silica particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号