首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid assessments of operating conditions and field preparation on dust discharge from nut harvesters are needed to guide improved equipment design and grower practices for dust reduction. An industrial opacity sensor, typically used for industrial stack monitoring, was adapted for use on a nut harvester to measure relative dust intensity during nut pick-up operations in almond orchards. Due to the high volume of discharge air and the presence of large debris such as leaves, additional components were coupled with the sensor to enable subsampling of the air. Pre-harvest windrow preparation conditions were evaluated. Results indicated that relative dust intensity decreased by 32% during harvest activities after windrow preparation with proper nut sweeper adjustment. Conventional harvesting results indicated that under typical operating conditions, reducing the separation fan speed could reduce relative dust intensity by 54%. Ground speed also had a strong effect; reducing speed from 4.8 to 2.4 km h(-1) reduced opacity of discharged air by 50%. The measurement system was also mounted on a separate vehicle and used as a tool for comparing modifications in harvest machine designs where direct measurement of discharge may not be feasible due to mechanical constraints. A comparison between a conventional harvester and one modification in the harvester design found that the machine modification decreased relative dust intensity by 73%. The measurement tools described in this work can be used to provide rapid feedback on harvester operating conditions, orchard cultural practices, and machine design modifications.  相似文献   

2.
Concerns over possible gaseous emissions from lignosulfonate dust suppressant agents used on dirt roads prompted an investigation into the possible release of sulfur dioxide and organic vapors. Emissions from eight commercial lignosulfonates products applied to three different soil types were measured in environmental chambers. It was determined that except under extreme soil pH conditions (<1), the release of sulfur dioxide from the application of lignosulfonates to roads is essentially non existent. The odor associated with the application was found to be due to trace amounts of organic compounds mainly of the furfural variety. Levels of odor compounds in these products was significantly lower than the previously reported values for spent sulfite liquors because the majority were removed during processing operations prior to sale.  相似文献   

3.
In nature, fish have gained wonderful swimming ability over the thousands of years of evolution. As the fish swims, its body, namely, it’s dorsal or tail fin undulates and then alternating waves are sent down the body towards the tip of the tail. These waves generate a jet in the wake and hence a forward force, namely thrust. Scientific studies have already shown that undulatory swimming is a highly effective means of continuous locomotion and has been successfully adopted in many kinds of robotic fishes currently being developed. However, our latest research found that if wave velocity that defines the undulatory motion of the body or the ‘fin’ is less than a specific value, the fishlike body with undulatory motion also has the capability to harvest kinetic energy from flowing fluid. This finding proposes a new energy-harvesting concept which could offer a new and promising solution to support the long-distance voyage of a biomimetic robotic fish.  相似文献   

4.
Air pollution in the areas affected by the Great Hanshin Earthquake (Hyogo, Japan) of 17 Jan. 1995 was quite serious. We performed three investigations of dust. In the first investigation, we measured the total suspended particulate (TSP) concentration in the greatly damaged areas, located around the Sannomiya Station where a few hundred thousand people walked by during the daytime of 3 February. The maximum concentration at five points reached 150 microg/m3. In the second investigation, eight samples, which were classified into three groups (concrete, mortar, and soil dusts) as sources, were analyzed elementally by X-ray fluorescence. The elements found in concrete dust (Ca and S) were similar to those found in mortar dust. These differed from those found in soil dust (Ti, Fe, and Zr). The elements found in soil dust were important from the viewpoint of heavy metal contamination. In the third investigation, the alkalinity of concrete dust was observed by dissolution. This solution was equivalent to pH 11 to 12 and electrical conductivity 20 to 30 microS/m. We suspect that the alkaline component in the dust from debris in all the devastated areas was approximately comparable with the alkaline solution by which the acid rain falling over the Hanshin district of Osaka Megalopolis in one year could be neutralized into water of pH 7.0.  相似文献   

5.
Cattle feedlot dust is an annoyance and may be a route for nutrient transport, odor emission, and pathogen dispersion, but important environmental factors that contribute to dust emissions are poorly characterized. A general protocol was devised to test feedlot samples for their ability to produce dust under a variety of environmental conditions. A blender was modified to produce dust from a variety of dried feedlot surface and soil samples and collect airborne particles on glass fiber filters by vacuum collection. A general blending protocol optimized for sample volume (150-175 cm3), blending time (5 min of pre-blending), and dust collection time (15 s) provided consistent dust measurements for all samples tested. The procedure performed well on samples that varied in organic matter content, but was restricted to samples containing less than 200 to 700 g H2O kg(-1) dry matter (DM). When applied to field samples, the technique demonstrated considerable spatial variability between feedlot pen sites. Mechanistically, dust potential was related to moisture and organic matter content. An alternative protocol also demonstrated differences within pen sites in maximum dust potential and dust airborne residence time. The two protocols were not intended, nor are they suitable, for predicting actual particulate matter emissions from agricultural sources. Rather, the protocols rapidly and inexpensively compared the potential for dust emission from samples of differing composition under a variety of environmental conditions.  相似文献   

6.
This paper presents results from field studies carried out during the 1993-1998 Australian cotton (Gossypium hirsutum L.) seasons to monitor off-target droplet movement of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) insecticide applied to a commercial cotton crop. Averaged over a wide range of conditions, off-target deposition 500 m downwind of the field boundary was approximately 2% of the field-applied rate with oil-based applications and 1% with water-based applications. Mean airborne drift values recorded 100 m downwind of a single flight line were a third as much with water-based application compared with oil-based application. Calculations using a Gaussian diffusion model and the U.S. Spray Drift Task Force AgDRIFT model produced downwind drift profiles that compared favorably with experimental data. Both models and data indicate that by adopting large droplet placement (LDP) application methods and incorporating crop buffer distances, spray drift can be effectively managed.  相似文献   

7.
High frequency electromagnetic fields (EMF) are widely used for transmitting of radio and TV signals, in wireless communications, etc. A huge number of people are exposed so the possible risk to human health from telecommunication technologies could be significant even if biological effects are slight. The study of the biological effects of RF EM radiation could contribute to better understanding of the possible health hazards. The levels of released hemoglobin serve as an indicator of hemolysis, caused by increased membrane fragility. This study was designed to investigate the alterations in hemoglobin release after in vitro exposure of human erythrocytes to GSM900 electromagnetic field. Erythrocyte suspensions with two different cell concentrations (hematocrit 20% and 40%) were exposed to EM radiation from GSM mobile phone (carrier frequency 902 MHz, 2 W output power in pulse) for 20 min in two different positions in relation to telephone antenna: Position 1 is in the centre of the major lobe of the azimuth antenna pattern and Position 2 is between major and back lobes. Alterations in hemolysis were registered 0, 10, 20, 30, 40, 50 and 60 min after the treatment. Hemolysis was determined by measuring the absorbance of hemoglobin at 413 nm in the supernatant obtained by centrifuging the suspensions. Hemolysis was expressed as hemoglobin concentration. Our data indicated decrease in the hemoglobin level in irradiated suspensions. The GSM900 EMF exposure probably stabilized erythrocyte membrane and caused reduction in the hemolysis depending on the EMF parameters, on the suspension water content (hematocrit) and on the time elapsed after irradiation.  相似文献   

8.
Off-site movement of endosulfan from irrigated cotton in New South Wales   总被引:1,自引:0,他引:1  
The fate and transport of endosulfan (6,7,8,9,10,10-hexachloro-1,5, 5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) applied to cotton (Gossypium hirsutum L.) fields were studied throughout three consecutive years on two selected locations in New South Wales (Australia). Rates of dissipation from foliage and soil, volatilization from the field, and transport of residues in irrigation and/or storm runoff waters were measured in order to estimate a total field balance. Dissipation of endosulfan from both foliage and soil is best explained by a two-phase process rather than by a first-order decay. Half-lives of total endosulfan toxic residues (alpha- and beta-endosulfan and the sulfate product) in the first phase were 1.6 d in foliage and 7.1 d in soil, and could be explained by the rapid volatilization of the parent isomers in the first 5 d (up to 70% of endosulfan volatilizes). In the second phase, half-lives were 9.5 d in foliage and 82 d in soil, mostly due to the persistence of the sulfate product. Concentration of endosulfan residues in runoff water varied from 45 to 2.5 microg L(-1) depending on the residue levels present on field soil at the time of the irrigation or storm events. These in turn are related to the total amounts applied, the cotton canopy cover at application, and the time since last spraying. Most of the endosulfan in runoff was found in the water phase (80%), suggesting it was bound to colloidal matter. Total endosulfan residues in runoff for a whole season accounted for no more than 2% of the pesticide applied on-field.  相似文献   

9.
The rapid development of wireless technologies leads to increased human exposure to electromagnetic fields from new devices. Most of these technologies communicate in short to medium range. Communication devices, such as mobile phones (GSM, UMTS, LTE) and wireless computer networks (WLAN, HSDPA, WIMAX) usually work at distances up to some 10 km. Other techniques like Bluetooth, RFID, and wireless USB work at distances up to a few meters. RFID systems can use several frequency bands from low frequencies up to microwaves. The other technologies are mainly using microwave frequencies. Most of these technologies have a rather low-output power, typically <1 W average power, except for fixed transmitters like base stations. This means that the exposure from distant sources is low. If the devices are kept close to the body, the local exposure can be in the range of the levels in the ICNIRP recommendation; this is the case, for example, for mobile phones and WLAN transmitters in laptops. For distant sources, there exist several measurement techniques such as spectrum analysers, measurement receivers, and broadband meters. For sources used close to the body, the local SAR levels have to be determined. For this purpose, instruments measuring the local electric field inside body phantoms have been developed. An alternative to measurements is numerical simulations. If one has knowledge of the signal characteristics of the different technologies then it is possible to find a suitable measurement technique to assess the human exposure.  相似文献   

10.
A cranial window method modified for our experiment enabled to observe the cerebral microcirculation including the blood-brain barrier permeability after a local expose to radio-frequency electromagnetic fields with a monopole antenna in rats. The present report reviews our recent publications that reported no noticeable changes in the cerebral microcirculatory parameters due to RF-EMF exposure.  相似文献   

11.
At the district heating plant of Kalmar, Sweden an on-line unit for production of granulated wood ash for nutrient recycling on forest soils is being applied. Currently, the granules are dried by hot air from an oil-fired burner. The objective of this work was to investigate how drying by flue gas affects the hardening of granules, or impacts their chemical composition and properties. Ninety-six granule samples were treated by flue gas from natural gas combustion in a laboratory pilot scale flue gas generator. CO2, CO, O2, C3H8 and NO concentrations were varied during the experiment. Additionally, some samples were treated by flue gas from combustion of sawdust at the heating plant in Kalmar. Drying by flue gases did not affect the chemical composition of granules, but minor effects were seen in their mineralogy. The carbonate content was slightly higher in granules treated with flue gas from natural gas combustion compared to the granules dried by hot air only, when measured by wet chemical methods. Results from XRD analysis imply that the calcite content is higher and the portlandite and arcanite content slightly less in granules treated with flue gas from sawdust combustion compared to the granules dried by hot air only. The results from this investigation showed no negative effects on ash granule composition or physical structure by the use of a flue as a drying medium.  相似文献   

12.
Soil fumigants are volatile compounds applied to agricultural land to control nematode populations, weeds, and crop diseases. Field trials used for measuring fumigant loss from soil to the atmosphere encompass only a small proportion of the near semi-infinite parameter combinations of environmental, agronomic, and meteorological conditions. One approach to supplement field observations uses a soil physics model for fumigant emission predictions. A model is first validated against existing field study observations and then used to extrapolate results to a wider range of edaphic and climatic conditions. This work compares field observations of 1,3-dichloropropene and chloropicrin emissions to predictions from the USDA soil model CHAIN_2D. Comparison between model predictions and field observations for a Florida and California study had values between 0.62 to 0.81 and 0.99 to 1.0 for discrete and cumulative emission flux, respectively. CHAIN_2D emission rates were then coupled to several USEPA air dispersion models (ISCST3, CALPUFF6) to extend emission estimates to near field air concentrations. CALPUFF6 predicted slightly higher 1-h maximum air concentrations than ISCST3 for the same source strength (26.2-36.0% for setbacks between 1 and 250 m from the field edge, respectively). A sensitivity analysis for the CHAIN_2D/ISCST3 coupled numerical system is provided, with several soil and irrigation parameters consistently the most sensitive. Changes in the depth of incorporation, tarp material, and initial soil water content illustrate the predicted impact to emission strength and resulting near-field air concentrations with reductions of cumulative emission loss from 8.1 to 71% and average 1-h maximum air concentration reductions between 6.2 and 41% depending on the mitigation strategy chosen. Additionally, a stochastic framework based on the published SOFEA system that couples variability in experiment, model sensitivity, and site specific attributes is outlined should regional air concentration estimates resulting from fumigant use be sought.  相似文献   

13.
In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.  相似文献   

14.
Growing water scarcity and global climate change call for more efficient alternatives of water conservation; rainwater harvesting (RWH) is the most promising alternative among others. However, the assessment of RWH potential and the selection of suitable sites for RWH structures are very challenging for the water managers, especially on larger scales. This study addresses this challenge by presenting a fairly robust methodology for evaluating RWH potential and identifying sites/zones for different RWH structures using geospatial and multicriteria decision analysis (MCDA) techniques. The proposed methodology is demonstrated using a case study. The remote sensing data and conventional field data were used to prepare desired thematic layers using ArcGIS© software. Distributed Curve Number method was used to calculate event-based runoffs, based on which annual runoff potential and runoff coefficient maps were generated in the GIS (geographic information system) environment. Thematic layers such as slope, drainage density, and runoff coefficient and their features were assigned suitable weights and then they were integrated in a GIS to generate a RWH potential map of the study area. Zones suitable for different RWH structures were also identified, together with suitable sites for constructing recharge structures (check dams and percolation tanks along the streams). It was found that the study area can be classified into three RWH potential zones: (a) ‘good’ (241 km2), (b) ‘moderate’ (476 km2), and (c) ‘poor’ (287 km2). About 3% of the study area (30 km2) is suitable for constructing farm ponds, while percolation tanks (on the ground) can be constructed in about 2.7% of the area (27 km2). Of the 83 sites identified for the recharge structures, 32 recharge sites are specially suited to the inhabitants because of their proximity. It is concluded that the integrated geospatial and MCDA techniques offer a useful and powerful tool for the planning of rainwater harvesting at a basin or sub-basin scale.  相似文献   

15.
Pesticide leaching is an important process with respect to contamination risk to the aquatic environment. The risk of leaching was thus evaluated for glyphosate (N-phosphonomethyl-glycine) and its degradation product AMPA (amino-methylphosphonic acid) under field conditions at one sandy and two loamy sites. Over a 2-yr period, tile-drainage water, ground water, and soil water were sampled and analyzed for pesticides. At a sandy site, the strong soil sorption capacity and lack of macropores seemed to prevent leaching of both glyphosate and AMPA. At one loamy site, which received low precipitation with little intensity, the residence time within the root zone seemed sufficient to prevent leaching of glyphosate, probably due to degradation and sorption. Minor leaching of AMPA was observed at this site, although the concentration was generally low, being on the order of 0.05 microg L(-1) or less. At another loamy site, however, glyphosate and AMPA leached from the root zone into the tile drains (1 m below ground surface [BGS]) in average concentrations exceeding 0.1 microg L(-1), which is the EU threshold value for drinking water. The leaching of glyphosate was mainly governed by pronounced macropore flow occurring within the first months after application. AMPA was frequently detected more than 1.5 yr after application, thus indicating a minor release and limited degradation capacity within the soil. Leaching has so far been confined to the depth of the tile drains, and the pesticides have rarely been detected in monitoring screens located at lower depths. This study suggests that as both glyphosate and AMPA can leach through structured soils, they thereby pose a potential risk to the aquatic environment.  相似文献   

16.
The persistence and degradation of endosulfan isomers and their primary degradation product, endosulfan-sulfate, were studied in a clay soil from cotton farms of western Queensland. Endosulfan degradation in relation to soil moisture, temperature, day and night temperature fluctuation, waterlogging and re-application were studied. The results show that the degradation rates of both endosulfan isomers were greatly affected by changes in soil water content and temperature. Under a high water content-high temperature regime the concentration of alpha-endosulfan in the soil fell rapidly during the first 4 weeks of application, followed by a prolonged period of slower rate of degradation. Alpha endosulfan showed a bi-exponential form of degradation for all water content-temperature experiments except for extremes in both these two factors. In the submerged soils (and also in low-water content, low temperature, non-submerged experiments) no such rapid initial degradation of alpha-endosulfan was observed, and a single first-order rate equation describes the data. Degradation of beta-endosulfan was significantly slower than for the alpha-isomer under all conditions studied. A half-life of more than a year was recorded for the beta-isomer when both water content and temperature were low. The degradation of beta-endosulfan showed no sign of the bi-exponential function observed for alpha-isomer, and a single first order rate equation described the data obtained for each factor studied. Endosulfan-sulfate was the major degradation product in all non-submerged experiments. Its build up in the soil very closely followed the disappearance of alpha-endosulfan. Its highest build-up was in the high water content-low temperature experiments, but its persistence was primarily influenced by soil temperature. Both alpha and beta-isomers, and endosulfan sulfate, persisted longer in the submerged soil. Re-application of endosulfan, and day and night fluctuation of temperature had contrasting effects on the degradation of the two isomers. Both factors slowed down the degradation of alpha-endosulfan and enhanced that of beta-endosulfan, but their net effect was to prolong the overall persistence of this chemical in the soil. Submerged conditions reduced the net formation of endosulfan-sulfate and enhanced its degradation rate.  相似文献   

17.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,4,3-benzodioxathiepin 3-oxide), a pesticide that is highly toxic to aquatic organisms, is widely used in the cotton (Gossypium hirsutum L.) industry in Australia and is a risk to the downstream riverine environment. We used the GLEAMS model to evaluate the effectiveness of a range of management scenarios aimed at minimizing endosulfan transport in runoff at the field scale. The field management scenarios simulated were (i) Conventional, bare soil at the beginning of the cotton season and seven irrigations per season; (ii) Improved Irrigation, irrigation amounts reduced and frequency increased to reduce runoff from excess irrigation; (iii) Dryland, no irrigation; (iv) Stubble Retained, increased soil cover created by retaining residue from the previous crop or a specially planted winter cover crop; and (v) Reduced Sprays, a fewer number of sprays. Stubble Retained was the most effective scenario for minimizing endosulfan transport because infiltration was increased and erosion reduced, and the stubble intercepted and neutralized a proportion of the applied endosulfan. Reducing excess irrigation reduced annual export rates by 80 to 90%, but transport in larger storm events was still high. Reducing the number of pesticide applications only reduced transport when three or fewer sprays were applied. We conclude that endosulfan transport from cotton farms can be minimized with a combination of field management practices that reduce excess irrigation and concentration of pesticide on the soil at any point in time; however, discharges, probably with endosulfan concentrations exceeding guideline values, will still occur in storm events.  相似文献   

18.
Runoff water management is among the inherent challenges which face the sustainability of the development of arid urban centers. These areas are particularly at risk from flooding due to rainfall concentration in few heavy showers. On the other hand, they are susceptible to drought. The capital of Sudan (Khartoum) stands as exemplary for these issues. Hence, this research study aims at investigating the potential of applying rainwater harvesting (RWH) in Khartoum City Center as a potential urban runoff management tool. Rapid urbanization coupled with the extension of impervious surfaces has intensified the heat island in Khartoum. Consequently, increased frequency of heat waves and dust storms during the dry summer and streets flooding during the rainy season have led to environmental, economical, and health problems. The study starts with exposing the rainfall behavior in Khartoum by investigating rainfall variability, number of raindays, distribution of rain over the season, probability of daily rainfall, maximum daily rainfall and deficit/surplus of rain through time. The daily rainfall data show that very strong falls of >30 mm occur almost once every wet season. Decreased intra- and inter-annual rainfall surpluses as well as increased rainfall concentration in the month of August have been taking place. The 30-year rainfall variability is calculated at decade interval since 1941. Increasing variability is revealed with 1981–2010 having coefficients of variation of 66.6% for the annual values and 108.8–118.0% for the wettest months (July–September). Under the aforementioned rainfall conditions, this paper then explores the potential of RWH in Khartoum City Center as an option for storm water management since the drainage system covers only 40% of the study area. The potential runoff from the 6.5 km2 center area is computed using the United States Natural Resources Conservation Services method (US-NRCS), where a weighted Curve Number (CN) of 94% is found, confirming dominant imperviousness. Rainfall threshold for runoff generation is found to be 3.3 mm. A 24,000 m3 runoff generated from a 13.1 mm rainfall (with 80% probability and one year return period) equals the drainage system capacity. An extreme rainfall of 30 mm produces a runoff equivalent to fourfold the drainage capacity. It is suggested that the former and latter volumes mentioned above could be harvested by applying the rational method from 18% and 80% rooftops of the commercial and business district area, respectively. Based on the above results, six potential sites can be chosen for RWH with a total roof catchment area of 39,558 m2 and potential rooftop RWH per unit area of 0.033 m3. These results reflect the RWH potential for effective urban runoff management and better water resources utilization. RWH would provide an alternative source of water to tackle the drought phenomenon.  相似文献   

19.
Accurate assessment of N(2)O emission from soil requires continuous year-round and spatially extensive monitoring or the use of simulation that accurately and precisely predict N(2)O fluxes based on climatic, soil, and agricultural system input data. DAYCENT is an ecosystem model that simulates, among other processes, N(2)O emissions from soils. The purpose of the study was to compare N(2)O fluxes predicted by the DAYCENT model to measured N(2)O fluxes from an experimental corn field in central Iowa. Soil water content temperature and inorganic N, simulated by DAYCENT were compared to measured values of these variables. Field N(2)O emissions were measured using four replicated automated chambers at 6-h intervals, from day of year (DOY) 42 through DOY 254 of 2006. We observed that DAYCENT generally accurately predicted soil temperature, with the exception of winter when predicted temperatures tended to be lower than measured values. Volumetric water contents predicted by DAYCENT were generally lower than measured values during most of the experimental period. Daily N(2)O emissions simulated by DAYCENT were significantly correlated to field measured fluxes; however, time series analyses indicate that the simulated fluxes were out of phase with the measured fluxes. Cumulative N(2)O emission calculated from the simulations (3.29 kg N(2)O-N ha(-1)) was in range of the measured cumulative N(2)O emission (4.26 +/- 1.09 kg N(2)O-N ha(-1)).  相似文献   

20.
Predicting dissolved phosphorus in runoff from manured field plots   总被引:2,自引:0,他引:2  
Dissolved inorganic P transport in runoff from agricultural soils is an environmental concern. Models are used to predict P transport but rarely simulate P in runoff from surface-applied manures. Using field-plot data, we tested a previously proposed model to predict manure P in runoff. We updated the model to include more data relating water to manure ratio to manure P released during water extractions. We verified that this update can predict P release from manure to rain using published data. We tested the updated model using field-plot and soil-box data from three manure runoff studies. The model accurately predicted runoff P for boxes, but underpredicted runoff P for plots. Underpredictions were caused by runoff to rain ratios used to distribute P into runoff or infiltration. We developed P distribution fractions from manure water extraction data to replace runoff to rain ratios. Calculating P distribution fractions requires knowing rainfall rate and times that runoff begins and rain stops. Using P distribution fractions gave accurate predictions of runoff P for soil boxes and field plots. We observed relationships between measured runoff to rain ratios and both P distribution fractions and a degree of error in original predictions, calculated as (measured runoff P/predicted runoff P). Using independent field-plot data, we verified that original underpredictions of manure runoff P can be improved by calculating P distribution fractions from measured runoff to rain ratios or adjusting runoff to rain ratios based on their degree of error. Future work should test the model at field or watershed scales and at longer time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号