首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A numerical model system was developed to quantify the probability of endangered bowhead and gray whales encountering spilled oil in Alaskan waters. Migration and diving-surfacing models for bowhead and gray whales, and an oil spill trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The distribution of whales is represented in space and time by discrete points, each of which may represent one or more whales. The movement of a whale point is governed by a random walk algorithm which stochastically follows a migratory pathway. Stochastic diving-surfacing models are used to stimulate surfacing behavior sequences for each species. The oil spill model accounts for oil transport and spreading in open water and in the presence of sea ice. Historical wind records and ice cover data sets provide the environmental conditions to generate stochastic oil spill scenarios. The oil spill, whale migration and diving-surfacing models are linked to provide quantitative estimates of whale-oil interactions. The model system was applied to the Alaskan Beaufort Sea to investigate the probability that bowhead whales would encounter oil spilled in this region.  相似文献   

2.
The vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in environmental conditions affecting the vadose zone. A mathematical model to simulate the water flow, and the fate and transport of recalcitrant contaminants was developed, which could be applied to various bioremediation methods such as phytoremediation and natural attenuation in the vadose zone. Two-phase flow equations and heat flux models were used to develop the model. Surface energy, balance equations were used to estimate soil surface temperature, and root growth and root distribution models were incorporated to represent the special contribution of plant mots in the vegetated soils. Interactions between the roots and environmental conditions such as temperature and water content were treated by incorporating a feedback mechanism that made allowance for the effects of water and temperature stresses on root distribution and water uptake by roots. In conducting the modeling study, Johnson grass and unplanted soil were simulated to compare the effect of root water uptake on soil water content. After the numerical experiments were conducted to investigate model behavior, the proposed model was applied to estimate actual water flow and heat flow in field lysimeter experiments over a 1-year period. Root growth and distribution for Johnson grass and rye grass were simulated to compare the warm season grass to the cold season grass. A significant agreement was observed between the simulations and measured data.  相似文献   

3.
This paper explores approaches to model specification suitable for empirical investigation of a stochastic oil spill model. We focus on the effects of economic incentive measures on the frequency of oil spills, spill size, and volume of oil spilled. We look into the relationships between parameters that describe the spill generation process and the enforcement effort, using data for the Black and Baltic Seas.  相似文献   

4.
We investigated the effects of a warmer climate, and seasonal trends, on the fate of oil spilled in the Arctic. Three well blowout scenarios, two shipping accidents and a pipeline rupture were considered. We used ensembles of numerical simulations, using the OSCAR oil spill model, with environmental data for the periods 2009–2012 and 2050–2053 (representing a warmer future) as inputs to the model. Future atmospheric forcing was based on the IPCC’s A1B scenario, with the ocean data generated by the hydrodynamic model SINMOD. We found differences in “typical” outcome of a spill in a warmer future compared to the present, mainly due to a longer season of open water. We have demonstrated that ice cover is extremely important for predicting the fate of an Arctic oil spill, and find that oil spills in a warming climate will in some cases result in greater areal coverage and shoreline exposure.  相似文献   

5.
《Environmental Forensics》2013,14(3-4):303-321
In the last decade, PETROBRAS has experienced some significant oil spills cases and the PETROBRAS Research Center has played an important role in the company emergency response program by characterizing the spilled oil, monitoring the affected ecosystem, determining the fate of the oil in the environment, and, subsequently, helping the company in assessing the environmental damage. This paper presents the use of advanced chemical analytical techniques (GC/FID, P&T/GC/PID and GC/MS) in some Brazilian oil spill studies in order to determine fractions and individual petroleum hydrocarbons in different matrices such as water, groundwater, sediment, sand, fish and the spilled oil itself. The spill studies encompassed crude and fuel oil releases on land and coastal ecosystems, related to the incidents in Guanabara Bay (Rio de Janeiro), Barigui and Iguassu Rivers (Parana) and Sao Sebastiao Channel (Sao Paulo). Total petroleum hydrocarbons (TPH), n -alkanes, isoprenoids, unresolved complex mixtures (UCM), volatile monoaromatic compounds--benzene, toluene, ethylbenzene and xylenes (BTEX), parent and alkylated homologues polycyclic aromatic hydrocarbons (PAH), and terpanes and steranes were characterized for determining correlation to the spilled oil and other known oil sources and environmental assessment. Some of the acute ecotoxicity data for water and sediment samples is also presented.  相似文献   

6.
One possible way of integrating subsurface flow and transport processes with (bio)geochemical reactions is to couple by means of an operator-splitting approach two completely separate codes, one for variably-saturated flow and solute transport and one for equilibrium and kinetic biogeochemical reactions. This paper evaluates the accuracy of the operator-splitting approach for multicomponent systems for typical soil environmental problems involving transient atmospheric boundary conditions (precipitation, evapotranspiration) and layered soil profiles. The recently developed HP1 code was used to solve the coupled transport and chemical equations. For steady-state flow conditions, the accuracy was found to be mainly a function of the adopted spatial discretization and to a lesser extent of the temporal discretization. For transient flow situations, the accuracy depended in a complex manner on grid discretization, time stepping and the main flow conditions (infiltration versus evaporation). Whereas a finer grid size reduced the numerical errors during steady-state flow or the main infiltration periods, the errors sometimes slightly increased (generally less than 50%) when a finer grid size was used during periods with a high evapotranspiration demand (leading to high pressure head gradients near the soil surface). This indicates that operator-splitting errors are most significant during periods with high evaporative boundary conditions. The operator-splitting errors could be decreased by constraining the time step using the performance index (the product of the grid Peclet and Courant numbers) during infiltration, or the maximum time step during evapotranspiration. Several test problems were used to provide guidance for optimal spatial and temporal discretization.  相似文献   

7.
《Environmental Forensics》2002,3(3-4):303-321
In the last decade, PETROBRAS has experienced some significant oil spills cases and the PETROBRAS Research Center has played an important role in the company emergency response program by characterizing the spilled oil, monitoring the affected ecosystem, determining the fate of the oil in the environment, and, subsequently, helping the company in assessing the environmental damage. This paper presents the use of advanced chemical analytical techniques (GC/FID, P&T/GC/PID and GC/MS) in some Brazilian oil spill studies in order to determine fractions and individual petroleum hydrocarbons in different matrices such as water, groundwater, sediment, sand, fish and the spilled oil itself. The spill studies encompassed crude and fuel oil releases on land and coastal ecosystems, related to the incidents in Guanabara Bay (Rio de Janeiro), Barigui and Iguassu Rivers (Parana) and Sao Sebastiao Channel (Sao Paulo). Total petroleum hydrocarbons (TPH), n -alkanes, isoprenoids, unresolved complex mixtures (UCM), volatile monoaromatic compounds—benzene, toluene, ethylbenzene and xylenes (BTEX), parent and alkylated homologues polycyclic aromatic hydrocarbons (PAH), and terpanes and steranes were characterized for determining correlation to the spilled oil and other known oil sources and environmental assessment. Some of the acute ecotoxicity data for water and sediment samples is also presented.  相似文献   

8.
In the new European Pesticide Regulation (EC) No. 1107/2009, the harmonisation of approaches for estimation of the environmental exposure of pesticides is considered a major goal. Several member states currently require their own models for the calculation of predicted environmental concentrations (PEC) in surface water. The variety of methods makes risk evaluations rather time-consuming for both notifiers and evaluating authorities. In the present study we compare surface water concentrations of 19 compounds using EU and country-specific models and risk assessment approaches to evaluate to which extent the resulting estimated exposure concentrations differ. Our results show that EU and country specific approaches and the resulting surface water concentrations differ considerably regarding basic model assumptions and assessment methods. The results indicate that the aimed harmonisation of risk assessment approaches within the EU will be difficult based on current models. New scenarios may help to achieve a harmonisation taking country-specific features into account.  相似文献   

9.
The source of crude oils and petroleum products released into navigable waterways and shipping lanes is not always known. Thus, the defensible identification of spilled crude oils and petroleum products and their correlation to suspected sources is a critical part of many oil spill assessments. Quantitative "fingerprinting" analysis, when evaluated using straightforward statistical and numerical analyses, provides a defensible means to differentiate among qualitatively similar oils and provides the best assessment of the source(s) for spilled oils. Polycyclic aromatic hydrocarbon (PAH) and petroleum biomarker concentration data are a particularly useful quantitative measure that can benefit most oil spill investigations. In this paper the strategy and methodology for correlation analysis that relies upon quantitative gas chromatography/mass spectrometry operated in the selected ion monitoring mode (GC/MS-SIM) is demonstrated in a case study involving 66 candidate sources for a heavy fuel oil spill of unknown origin. The strategy includes identification of 19 chemical indices (out of 45 evaluated) based upon PAH's and biomarkers that were (1) independent of weathering; and (2) precisely measured, both of which are determined by statistical analysis of the data. The 19 chemical indices meeting these criteria are subsequently analysed using principal component analysis (PCA), which helps to determine defensibly the "prime suspects" for the oil spill under investigation. The strategy and methodology described, which combines statistical and numerical analysis of quantitative chemical data, can be adapted and applied to other environmental forensic investigations with the objective of correlating any form of contamination to its suspected sources.  相似文献   

10.
The amount, location, and form of NAPL in contaminated vadose zones are controlled by the spatial distribution of water saturation and soil permeability, the NAPL spill scenario, water infiltration events, and vapor transport. To evaluate the effects of these processes, we used the three-phase flow simulator STOMP, which includes a new permeability-liquid saturation-capillary pressure (k-S-P) constitutive model. This new constitutive model considers three NAPL forms: free, residual, and trapped. A 2-D vertical cross-section with five stratigraphic layers was assumed, and simulations were performed for seven cases. The conceptual model of the soil heterogeneity was based upon the stratigraphy at the Hanford carbon tetrachloride (CT) spill site. Some cases considered co-disposal of NAPL with large volumes of wastewater, as also occurred at the Hanford CT site. In these cases, the form and location of NAPL were most strongly influenced by high water discharge rates and NAPL evaporation to the atmosphere. In order to investigate the impact of heterogeneity, the hydraulic conductivity within the lower permeability layer was modeled as a realization of a random field having three different classes. For six extreme cases of 100 realizations, the CT mass that reached the water table varied by a factor of two, and was primarily controlled by the degree of lateral connectivity of the low conductivity class within the lowest permeability layer. The grid size at the top boundary had a dramatic impact on NAPL diffusive flux just after the spill event when the NAPL was present near the ground surface. NAPL evaporation with a fine grid spacing at the top boundary decreased CT mass that reached the water table by 74%, compared to the case with a coarse grid spacing, while barometric pumping had a marginal effect for the case of a continuous NAPL spill scenario considered in this work. For low water infiltration rate scenarios, the distribution of water content prior to a NAPL spill event decreased CT mass that reached the water table by 98% and had a significant impact on the formation of trapped NAPL. For all cases simulated, use of the new constitutive model that allows the formation of residual NAPL increased the amount of NAPL retained in the vadose zone. Density-driven advective gas flow from the ground surface controlled vapor migration in strongly anisotropic layers, causing NAPL mass flux to the lower layer to be reduced. These simulations indicate that consideration of the formation of residual and trapped NAPLs and dynamic boundary conditions (e.g., areas, rates, and periods of different NAPL and water discharge and fluctuations of atmospheric pressure) in the context of full three-phase flow are needed, especially for NAPL spill events at the ground surface. In addition, NAPL evaporation, density-driven gas advection, and NAPL vertical movement enhanced by water flow must be considered in order to predict NAPL distribution and migration in the vadose zone.  相似文献   

11.
The source of crude oils and petroleum products released into navigable waterways and shipping lanes is not always known. Thus, the defensible identification of spilled crude oils and petroleum products and their correlation to suspected sources is a critical part of many oil spill assessments. Quantitative “fingerprinting” analysis, when evaluated using straightforward statistical and numerical analyses, provides a defensible means to differentiate among qualitatively similar oils and provides the best assessment of the source(s) for spilled oils. Polycyclic aromatic hydrocarbon (PAH) and petroleum biomarker concentration data are a particularly useful quantitative measure that can benefit most oil spill investigations. In this paper the strategy and methodology for correlation analysis that relies upon quantitative gas chromatography/mass spectrometry operated in the selected ion monitoring mode (GC/MS-SIM) is demonstrated in a case study involving 66 candidate sources for a heavy fuel oil spill of unknown origin. The strategy includes identification of 19 chemical indices (out of 45 evaluated) based upon PAH's and biomarkers that were (1) independent of weathering; and (2) precisely measured, both of which are determined by statistical analysis of the data. The 19 chemical indices meeting these criteria are subsequently analysed using principal component analysis (PCA), which helps to determine defensibly the “prime suspects” for the oil spill under investigation. The strategy and methodology described, which combines statistical and numerical analysis of quantitative chemical data, can be adapted and applied to other environmental forensic investigations with the objective of correlating any form of contamination to its suspected sources.  相似文献   

12.
《Environmental Forensics》2013,14(3-4):349-355
Assessment of environmental damage following accidental oil spills requires reliable oil identification methods. Results from hydrocarbon analyses of environmental samples are often difficult to interpret, because of the changes in oil composition (or weathering) that follows release into the environment, and because of confounding by hydrocarbons from other sources. To a first-order approximation, weathering proceeds according to simple first-order loss-rate (FOLR) kinetics for polycyclic aromatic hydrocarbons (PAH) based on molecular size. This relationship between relative weathering rate and molecular size can be exploited to infer the initial PAH composition of spilled oils, and this information can be combined with results for weathering-invariant analytes to substantially increase the precision and accuracy of hydrocarbon source recognition methods. The approach presented here evaluates a goodness-of-fit metric between the measured hydrocarbon composition of an environmental sample and a suspected source, after correcting for PAR weathering losses based on FOLR kinetics. Variability from analytical and sampling error may thus be accounted for, and source identifications can be expressed as objective probability statements. This approach is illustrated by application to four independent case studies.  相似文献   

13.
《Environmental Forensics》2002,3(3-4):349-355
Assessment of environmental damage following accidental oil spills requires reliable oil identification methods. Results from hydrocarbon analyses of environmental samples are often difficult to interpret, because of the changes in oil composition (or weathering) that follows release into the environment, and because of confounding by hydrocarbons from other sources. To a first-order approximation, weathering proceeds according to simple first-order loss-rate (FOLR) kinetics for polycyclic aromatic hydrocarbons (PAH) based on molecular size. This relationship between relative weathering rate and molecular size can be exploited to infer the initial PAH composition of spilled oils, and this information can be combined with results for weathering-invariant analytes to substantially increase the precision and accuracy of hydrocarbon source recognition methods. The approach presented here evaluates a goodness-of-fit metric between the measured hydrocarbon composition of an environmental sample and a suspected source, after correcting for PAH weathering losses based on FOLR kinetics. Variability from analytical and sampling error may thus be accounted for, and source identifications can be expressed as objective probability statements. This approach is illustrated by application to four independent case studies.  相似文献   

14.
不同类型海岸的溢油清理方法   总被引:1,自引:0,他引:1  
世界石油资源分布和需求的不均衡性,促进了海上石油工业和石油运输业的快速发展,同时也增加了溢油事故的几率.海上溢油污染问题日趋严重,溢油污染对海洋环境、生态、资源、经济及人类生产生活等造成了巨大的影响,日益引起社会各界的关注.海岸溢油污染清理实践表明,正确的溢油清理方案的制定应综合考虑海岸的敏感性指数、溢油的类型、清理方法可能带来的危害以及支际可操作程度等.对包括盐沼地海岸和红树林海岸,沉积海岸,以及岩石海岸三类典型海岸的国内外现有海岸溢油污染清理技术进行了详细的综述,以期为我国的海岸带管理和溢油应急计划的制订提供技术参考.  相似文献   

15.
In September 1969, the Florida barge spilled 700,000 L of No. 2 fuel oil into the salt marsh sediments of Wild Harbor, MA. Today a substantial amount, approximately 100 kg, of moderately degraded petroleum remains within the sediment and along eroding creek banks. The ribbed mussels, Geukensia demissa, which inhabit the salt marsh creek bank, are exposed to the spilled oil. Examination of short-term exposure was done with transplantation of G. demissa from a control site, Great Sippewissett marsh, into Wild Harbor. We also examined the effects of long-term exposure with transplantation of mussels from Wild Harbor into Great Sippewissett. Both the short- and long-term exposure transplants exhibited slower growth rates, shorter mean shell lengths, lower condition indices, and decreased filtration rates. The results add new knowledge about long-term consequences of spilled oil, a dimension that should be included when assessing oil-impacted areas and developing management plans designed to restore, rehabilitate, or replace impacted areas.  相似文献   

16.
When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.  相似文献   

17.
Biomarkers and low-molecular weight polyaromatic compounds have been extensively studied for their fate in the environment. They are used for oil spill source identification and monitoring of weathering and degradation processes. However, in some cases, the absence or presence of very low concentration of such components restricts the access of information to spill source. Here we followed the resistance of high-molecular weight sulfur-containing aromatics to the simulated weathering condition of North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The sulfur aromatics in North Sea crude having double bond equivalents (DBE) from 6 to 14 with a mass range 188-674 Da were less influenced even after 6 months artificial weathering. Moreover, the ratio of dibenzothiophenes (DBE 9)/naphthenodibenzothiophenes (DBE 10) was 1.30 and 1.36 in crude oil and 6 months weathered sample, respectively reflecting its weathering stability. It also showed some differences within other oils. Hence, this ratio can be used as a marker of the studied crude and accordingly may be applied for spilled oil source identification in such instances where the light components have already been lost due to environmental influences.  相似文献   

18.
Yan M  Kahawita R 《Chemosphere》2007,67(5):879-885
Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.  相似文献   

19.
Hydrocarbon vapors associated with spilled petroleum products arouse regulatory concern and can pose a significant health and safety risk. While petroleum products do not contain a significant amount of methane (CH 4 ), high CH 4 contents in soil gas near petroleum spills have been reported. While CH 4 is nontoxic, its accumulation in shallow soil gas represents a potential explosion and asphyxiation hazard, especially in confined spaces. Identifying the source and origin of shallow CH 4 accumulations is an important part of evaluating potential exposure pathways, selecting appropriate remedial measures, and determining environmental liability. This paper discusses the potential nature and anthropogenic sources for shallow CH 4 and how integration of geological, geochemical, and land use data can be used to determine its origin and identify its source. Two case studies are presented, one where CH 4 associated with a gasoline spill is shown to be derived from a natural source rather than the gasoline, and a second where CH 4 associated with spilled crude oil is shown to be produced in the vadose zone by biodegradation of the oil.  相似文献   

20.
Sorption and desorption of Yb(III) were studied on hematite and on alumina using a surface complexation model. The experimental methodology was conceived to allow an analysis of the data using a constant capacitance model. The FITEQL code was used for the calculations.The experimental results tend to show reversibility of sorption when the surface loading is small, and irreversibility when the surface loading is high. Surface complexation modeling gives a good interpretation of these two phenomena, taking into account hydroxylation of the surface complexes. In these two cases, it is possible to describe sorption and desorption curves with the same surface stoichiometries and the same surface complexation constants. The existence of these surface complexes depends on the pH of the solution, surface loading, and reaction direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号