首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people working in the mall, should be of health effect concern.  相似文献   

2.
Porous silica spheres were investigated for their effectiveness in removing typical indoor air pollutants, such as aromatic and carbonyl-containing volatile organic compounds (VOCs), and compared to the commercially available polymer styrene-divinylbenzene (XAD-4). The silica spheres and the XAD-4 resin were coated on denuder sampling devices and their adsorption efficiencies for VOCs evaluated using an indoor air simulation chamber. Real indoor sampling was also undertaken to evaluate the affinity of the silica adsorbents for a variety of indoor VOCs. The silica sphere adsorbents were found to have a high affinity for polar carbonyls and found to be more efficient than the XAD-4 resin at adsorbing carbonyls in an indoor environment.  相似文献   

3.
In order to characterize the status of indoor air pollution in some important facilities, a list of key criteria pollutants [particulate matter (PM(10)), carbon dioxide (CO(2)), carbon monoxide (CO), formaldehyde (HCHO), and bioaerosol] was measured from a total of 91 randomly selected sites in 18 different cities, Korea (February 2006 to December 2009). The target facilities include 43 child care facilities, 38 medical facilities, 6 elementary schools, and 4 postnatal care centers. The results showed that some air pollutants (e.g., CO and HCHO) did not exceed the recommended guideline [e.g., the Korean indoor air standard (KIAS) values of 10 ppm and 100 ppb, respectively]. However, concentration of PM(10), CO(2), and bioaerosol occasionally exceeded their respective guidelines (e.g., seven, three, and two cases). Discrete seasonalities were observed from indoor pollutants because of varying ventilation practice (e.g., summer time dominance of PM(10), HCHO, and bioaerosol or winter dominance of CO(2) and CO). However, as the concentrations of the indoor pollutants were scarcely above the recommended guideline level, more diversified approaches are desirable to diagnose the status of indoor pollution and to provide a realistic strategy for the improvement of IAQ.  相似文献   

4.
Mixing ratios of 15 carbonyls and BTEX (benzene, toluene, ethyl benzene, xylenes) were measured for the first time in ambient air of Kolkata, India at three sites from March to June 2006 and their photochemical reactivity was evaluated. Day and nighttime samples were collected on weekly basis. Formaldehyde was the most abundant carbonyl (mean concentration ranging between 14.07 microg m(-3) to 26.12 microg m(-3) over the three sites) followed by acetaldehyde (7.60-18.67 microg m(-3)) and acetone (4.43-10.34 microg m(-3)). Among the high molecular weight aldehydes, nonanal showed the highest concentration. Among the mono-aromatic VOCs, mean concentration of toluene (27.65-103.31 microg m(-3)) was maximum, closely followed by benzene (24.97-79.18 microg m(-3)). Mean formaldehyde to acetaldehyde (1.4) and acetaldehyde to propanal ratios (5.0) were typical of urban air. Based on their photochemical reactivity towards OH. radical, the concentrations of the VOCs were scaled to formaldehyde equivalent, which showed that the high molecular weight carbonyls and xylenes contribute significantly to the total OH-reactive mass of the VOCs. Due to the toxic effect of the VOCs studied, an assessment for both cancer risk and non-cancer hazard due to exposure to the population were calculated. Integrated life time cancer risk (ILTCR) due to four carcinogens (benzene, ethyl benzene, formaldehyde and acetaldehyde) and non-cancer hazard index for the VOCs at their prevailing level were estimated to be 1.42E-04 and 5.6 respectively.  相似文献   

5.
Air quality data from a network of 11 monitoring stations in the Apulia region of southern Italy during the summer of 2005 reveal a high frequency of ozone law limit violations. Since ozone is a secondary pollutant, air quality control strategies aimed at reducing ozone concentration are not immediate. Herein, we analyse weekly changes in concentration levels of ozone (O(3)), nitrogen oxides (NO(x)), carbon monoxide (CO), and volatile organic compounds (VOCs), and evaluate how the differences in primary emissions cause changes in the production of ozone. The comparison between weekend and weekday levels of O(3) and its precursors are direct evidence for the existence of the "ozone weekend effect." This effect was observed at all stations with a considerable variation in the overall ozone magnitude, including both traffic stations and non-traffic stations. Data from VOC measurements at traffic stations primarily indicated elevated levels of benzene, toluene, and xylenes (BTX); all of these substances showed an overall decrease over the weekend. A single station indicated levels of non-methane hydrocarbon (NMHC) and PM10, both of which did not demonstrate any weekly cycle. Analysis of weekly and diurnal cycles of O(3), NO(x), CO, NMHC, and PM10 indicates that higher weekend ozone levels result from a reduction in the emission of nitrogen oxides on weekends in VOC-sensitive regimes. This indicates that a reduction in VOC and NO(x) levels would be more effective than NO(x) reduction alone. Our results underscore the need for improved and more efficient VOC measurements.  相似文献   

6.
Seventeen airborne carbonyls including monocarbonyls and dicarbonyls were determined in urban and sub-urban sites of Xi’an, China in three seasons in 2010. In winter, acetone was the most abundant carbonyl in the urban site due to usage of organic solvents in constructions and laboratories and its slower atmospheric removal mechanisms by photolysis and reaction with hydroxyl radical than those of formaldehyde and acetaldehyde. In the sub-urban site, acetaldehyde was the most abundant carbonyl, followed by formaldehyde and acetone. During summer, however, formaldehyde was the most dominant carbonyl in both sites. The photooxidations of a wide range of volatile organic compounds (VOCs) yielded much more formaldehyde than other carbonyls under high solar radiation and temperature. In the urban site, the average concentrations of dicarbonyls (i.e., glyoxal and methyglyoxal) in spring and summer were higher than that in winter. Transformation of aromatic VOCs emitted from fuel evaporation leads to the formation of 1,2-dicarbonyls. A reverse trend was observed in sub-urban sites, as explained by the relatively low abundances and accumulations of VOC precursors in the rural atmosphere during warm seasons. Moreover, cumulative cancer risk based on measured outdoor carbonyls (formaldehyde and acetaldehyde) in Xi’an Jiaotong University and Heihe was estimated (8.82?×?10?5 and 4.96?×?10?5, respectively). This study provides a clear map on the abundances of carbonyls and their source interpretation in the largest and the most economic city in Northwestern China.  相似文献   

7.
针对室内空气挥发性有机物测定方法的不足,本文采用预冷浓缩系统和气相色谱,质谱联用。建立了测定室内空气中39种挥发性有机物的分析方法,该方法采用苏码罐采样,经液氮预冷冻浓缩后,用心城由检测。该方法灵敏度高,操作简便、重现性好、准确度高,适用于室内空气中挥发性有机物的测定。  相似文献   

8.
The Po valley in northern Italy is renowned for its high air pollutant concentrations. Measurements of air pollutants from a background site in Modena, a town of 200 thousand inhabitants within the Po valley, are analysed. These comprise hourly data for CO, NO, NO(2), NO(x), and O(3), and daily gravimetric equivalent data for PM(10) from 1998-2010. The data are analysed in terms of long-term trends, annual, weekly and diurnal cycles, and auto-correlation and cross-correlation functions. CO, NO and NO(2) exhibit a strongly traffic-related pattern, with daily peaks at morning and evening rush hour and lower concentrations over the weekend. Ozone shows an annual cycle with a peak in July due to local production; notwithstanding the diurnal cycle dominated by titration by nitrogen oxide, the decreasing long term trend in NO concentration did not affect the long term trend in O(3), whose mean concentration remained steady over the sampling period. PM(10) shows a strong seasonality with higher concentration in winter and lower concentration in summer and spring. Both PM(10) and ozone show a marked weekly cycle in summer and winter respectively. Regressions of PM(10) upon NO(x) show a consistently greater intercept in winter, representing higher secondary PM(10) in the cooler months of the year. There is a seasonal pattern in primary PM(10) to NO(x) ratios, with lower values in winter and higher values in summer, but the reasons are unclear.  相似文献   

9.
Solid-phase microextraction (SPME) was studied for the measurement of volatile organic compounds (VOCs) in indoor air. An adsorptive PDMS/Carboxen fibre was used and an analytical methodology was developed in order to overcome competitive adsorption. Kinetics and adsorption isotherms were investigated for different sample volumes and model compounds. In order to evaluate competitive adsorption on the fibre, these compounds were studied alone and in mixture. From the results obtained, the operating conditions allowing co-adsorption of the target compounds were determined: the air sample is enclosed in a 250 mL glass bulb where the SPME fibre is exposed until adsorption equilibrium. This procedure was combined with GC/MS analysis for the identification and quantification of VOCs in indoor air. The performances were determined by using a standard gas containing 10 VOCs representative of indoor environments (acetaldehyde, acetone, BTX, alpha-pinene, trichloroethylene, alkanes). The detection limits were determined in single ion monitoring mode and for a signal to noise ratio of 3. Except acetaldehyde (6 microg m(-3)), they are all below 0.5 microg m(-3). Calibration curves are linear up to 10 micromol m(-3) for all the compounds with good correlation coefficients (above 0.99). The reproducibility ranges from 6 to 12% according to the compound. The methodology was then applied to the comparison of the VOCs content in classrooms of two different schools.  相似文献   

10.
During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.  相似文献   

11.
Indoor air quality at nine locations viz. food courts, restaurant, bar, conference room, office and theater, which can be classified as public places have been monitored for Volatile Organic Compounds (VOCs) content. Forty VOCs have been identified and one fourth of these are classified as Hazardous Air Pollutants. Levels of most VOCs are observed to be below the guideline values for public places and offices, as adopted by Hong Kong. Consumer goods are found to be predominant source of chlorinated VOCs in indoor air. Levels of benzene and carbon tetrachlorides were observed to be above the guideline values at all the locations. Effect of ozonisation on Total VOC concentrations have also been studied.  相似文献   

12.
The main objective of this work was to quantify and characterize the major indoor air contaminants present in different stages of a municipal WWTP, including microorganisms (bacteria and fungi), carbon dioxide, carbon monoxide, hydrogen sulfide ammonia, formaldehyde, and volatile organic compounds (VOCs). In general, the total bacteria concentration was found to vary from 60 to >52,560 colony-forming units (CFU)/m3, and the total fungi concentration ranged from 369 to 14,068 CFU/m3. Generally, Gram-positive bacteria were observed in higher number than Gram-negative bacteria. CO2 concentration ranged from 251 to 9,710 ppm, and CO concentration was either not detected or presented a level of 1 ppm. H2S concentration ranged from 0.1 to 6.0 ppm. NH3 concentration was <2 ppm in most samples. Formaldehyde was <0.01 ppm at all sampling sites. The total VOC concentration ranged from 36 to 1,724 μg/m3. Among the VOCs, toluene presented the highest concentration. Results point to indoor/outdoor ratios higher than one. In general, the highest levels of airborne contaminants were detected at the primary treatment (SEDIPAC 3D), secondary sedimentation, and sludge dehydration. At most sampling sites, the concentrations of airborne contaminants were below the occupational exposure limits (OELs) for all the campaigns. However, a few contaminants were above OELs in some sampling sites.  相似文献   

13.
Our group previously demonstrated that carbon dioxide (CO2) levels in heavily occupied schools correlate with the levels of airborne bacterial markers. Since CO2 is derived from the room occupants, it was hypothesized that in schools, bacterial markers may be primarily increased in indoor air because of the presence of children; directly from skin microflora or indirectly, by stirring up dust from carpets and other sources. The purpose of this project was to test the hypothesis. Muramic acid (Mur) is found in almost all bacteria whereas 3-hydroxy fatty acids (3-OH FAs) are found only in Gram-negative bacteria. Thus Mur and 3-OH FA serve as markers to assess bacterial levels in indoor air (pmol m(-3)). In our previous school studies, airborne dust was collected only from occupied rooms. However, in the present study, additional dust samples were collected from the same rooms each weekend when unoccupied. Samples were also collected from outside air. The levels of dust, Mur and C10:0, C12:0, C14:0, and C16:0 3-OH FAs were each much higher (range 5-50 fold) in occupied rooms than in unoccupied school rooms. Levels in outdoor air were much lower than that of indoor air from occupied classrooms and higher than the levels in the same rooms when unoccupied. The mean CO2 concentrations were around 420 parts per million (ppm) in unoccupied rooms and outside air; and they ranged from 1017 to 1736 ppm in occupied rooms, regularly exceeding 800-1000 ppm, which are the maximum levels indicative of adequate indoor ventilation. This indicates that the children were responsible for the increased levels of bacterial markers. However, the concentration of Mur in dust was also 6 fold higher in occupied rooms (115.5 versus 18.2 pmole mg(-1)). This further suggests that airborne dust present in occupied and unoccupied rooms is quite distinct. In conclusion in unoccupied rooms, the dust was of environmental origin but the children were the primary source in occupied rooms.  相似文献   

14.
Burning incense to pay homage to deities is common in Chinese homes and temples. Air samples were collected and analyzed for carbonyls from a home and a temple in Hong Kong where incense burning occurs on a daily basis. Carbonyls in the air were trapped on a solid sorbent coated with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine, followed by thermal desorption and subsequent GC/MS analysis. The carbonyls identified include formaldehyde, acetaldehyde, acrolein, 2-furfural, benzaldehyde, glyoxal, and methylglyoxal. The levels of the above carbonyls correlate with the intensity of the incense-burning activities. The total mixing ratios of the carbonyls in the temple exceed those in the ambient air outside the temple by 11-23 times. Formaldehyde is the most abundant species, contributing to approximately 55% of the total carbonyl mixing ratios in both the temple and the home environments during incense burning. The mixing ratio of formaldehyde ranges from 108 to 346 ppbv in the temple and averages 103 ppbv in the home during incense burning. These values exceed the World Health Organization (WHO) air quality guideline of 100 microg m(-3) (88 ppbv) for formaldehyde. The highest formaldehyde level in the temple exceeds the WHO guideline by 3 times at peak incense burning hours. The mixing ratio of acrolein in the temple ranges from 20 to 99 ppbv, approaching or exceeding the WHO air quality guideline of 50 microg m(-3) (22 ppbv) for acrolein. Our measurements indicate that incense burning significantly elevates the concentrations of a number of carbonyls, most notably formaldehyde and acrolein, in the surrounding environments. This study provides preliminary insights on indoor air quality problems created by incense burning.  相似文献   

15.
Concentrations of formaldehyde, acetaldehyde, acetone, propionaldehyde, i-pentanal, and butyraldehyde in residential indoor air in Hangzhou were determined. The mean concentration of the total carbonyl compounds in summer was 222.6 μg/m3, higher than that in winter (68.5 μg/m3). The concentration of a specific carbonyl in indoor air was higher than the outdoor air measurement, indicating the release of carbonyls from the indoor sources. Formaldehyde and acetone were the most abundant carbonyls detected in summer and winter, respectively. Multiple regression analysis indicated that carbonyl concentrations in residential indoor air depended on the age of decoration and furniture, as well as their concentrations in outdoor air. In addition, a primary estimation showed that the health risks of carbonyls in summer were higher than those in winter.  相似文献   

16.
It is costly to sample all air pollutants of a general community. Air sampling should be conducted based on a practical assessment strategy and monitoring plan. In Hong Kong, the Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to grade workplace IAQ as 'Excellent' or 'Good' by measuring the levels of nine common indoor air pollutants, namely carbon dioxide (CO(2)), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO(2)), ozone (O(3)), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), and airborne bacteria count (ABC). Although average office IAQ performance has been improved since the implementation of this certification scheme, there are still resource issues and technical difficulties. To streamline the assessment of office IAQ performance, this study proposes a simple index of IAQ benchmarks formulated in compliance with the HKEPD requirements. In particular, three of the nine listed common air pollutants were selected as the 'representatives' for the overall satisfactory IAQ. Together with the assessment results of 422 Hong Kong air-conditioned offices, the index was evaluated in terms of test sensitivity, specificity and predictive values. Proved to be feasible to describe the IAQ of some air-conditioned offices, this IAQ index would be a useful tool for policymakers, building owners and professionals to quantify IAQ performance in offices and to make decisions on resources and manpower management for efficient mitigation actions.  相似文献   

17.
The diurnal variation of atmospheric carbonyls and VOCs in a forest in south China were studied in summer 2004. Twenty kinds of carbonyls and eight kinds of VOCs were identified and quantified. Formaldehyde and acetaldehyde were the two most abundant carbonyls, while the most abundant VOCs were isoprene, followed by o-xylene. Most C3-C10 carbonyls had higher concentrations from 09:00 to 15:00, and their levels were lower during night-time and often reached the lowest in early morning. Formaldehyde and acetaldehyde, however, showed two high levels in their diurnal patterns partly due to their different sources and sinks. The VOCs had different diurnal patterns compared to most carbonyls. The highest concentrations were observed from 03:00 to 06:00 for 1-butene, from 06:00 to 12:00 for isoprene, and from 12:00 to 15:00 for α-pinene. The highest levels for aromatic hydrocarbons occurred during midnight and the lowest in late afternoon. According to the study, emissions from vegetation and photo-oxidation of gas-phase hydrocarbons were the main sources for some carbonyls and VOCs in this region. Other compounds, such as formaldehyde, acetaldehyde and BTEX, showed anthropogenic sources.  相似文献   

18.
室内空气有机污染的研究现状   总被引:13,自引:1,他引:12  
主要讨论了室内空气中有机物污染的研究现状。重点介绍了室内空气中多环芳烃 (PAHs)、挥发性有机物(VOCs)、醛类化合物等的污染状况及来源。简要叙述了室内空气污染的影响因素及对人体的健康风险评价。  相似文献   

19.
采用预冷冻浓缩系统和气相色谱-质谱联用,建立了测定空气中39种挥发性有机物的分析方法,该法用苏玛罐或Tedlar气袋采集空气样品经-160℃液氮预冷冻浓缩后,用GC-MS检测.该方法采样简便,灵敏度、准确度高,已应用于室内空气和环境空气的测定,取得满意的结果.  相似文献   

20.
The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号