首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
- DOI: http://dx.doi.org/10.1065/espr2006.01.010 Background, Aims and Scope Although pp'DDT usage was strongly limited or banned in most parts of the world during the last three or four decades, the parent compound, its homologues and their metabolites still occur at levels which might pose a risk for many ecosystem components. A case of DDT pollution of industrial origin was discovered in 1996 in Lake Maggiore, the second largest (212 km2) and deepest (370 m) lake in Italy, causing concern for wildlife and human health. The extensive monitoring of many biotic and abiotic compartments which followed from 1998 in order to assess the pollution level and its trend in time, provided a great availability of data referring to DDT contamination of the different fish species of the lake. In this study, the recent contamination levels in selected fish species were compared to those measured in 1998 to evaluate the temporal pollution trend of the lake and its natural recovery, given that no remediation measures were carried out on the contaminated soils and sediments in this time span. Moreover, a modelling approach to test the equilibrium condition between water and pelagic fish species was used. Analytical results of pp'DDT and pp'DDE concentrations in lake water were used as input data in the bioenergetic model by Connolly & Pedersen (1988) to calculate concentrations in two fish species and to compare the predicted and the measured contamination. Methods Sampling and analytical determination of DDT homologues in lake water: Five water sampling campaigns were carried out from May 2002 to February 2004 in three sampling sites of Lake Maggiore. Suspended and dissolved pollutants were determined separately. Quantitative DDT homologue analyses were performed by HRGC coupled with ECD detection by the external standard method. Single water extracts were put together in correspondence with the stratification zones of the water column inferred on the basis of the temperature profile to improve analytical sensitivity. Selection of fish data: Concentrations of DDT and DDE in fishes were selected from recent literature (CIPAIS 2003, 2004). Bioaccumulation model: The bioenergetic model proposed by Connolly & Pedersen (1988) was used to assess the bioaccumulation of pp'DDT and pp'DDE of Alosa fallax (landlocked shad) and Coregonus spp. (whitefish), selected among the different species as representative of a secondary consumer level. Results and Discussion The average concentrations of pp'DDT and pp'DDE in water to be used as input data in the bioenergetic model were obtained considering all the concentrations measured at the three sampling stations in the epylimnion where the fish species considered in this study spend most of their life. The resulting values were 0.05 and 0.16 ng/L for pp'DDT and pp'DDE, respectively. Average measured pp'DDT and pp'DDE concentrations in landlocked shad were 0.81 +/- 0.39 and 1.69 +/- 0.71 mg/kg lipids, respectively, and were 0.29 +/- 0.12 and 1.06 +/- 0.41 mg/kg lipids for the whitefish. Calculated and measured values turned out to be in quite good agreement for pp'DDT, while measured pp'DDE concentrations were higher than expected on the basis of the bioenergetic model in both species. Probably metabolic transformations of pp'DDT accumulated in fish tissues in the past are responsible for the observed differences between calculated and expected pp'DDE concentrations in fish. Conclusions Pelagic fishes of Lake Maggiore seem to maintain the DDT accumulated during their life time and the most efficient mechanism responsible for the fish population recoveries is probably their generation changes; for this reason, equilibrium models cannot be used until negligible pp'DDT concentrations are reached in fish tissues. Recommendations and Outlook The limit proposed for pp'DDT in water by the EU Directive 2000/60, which will come in force in 2008, is 0.2 ng/L, four times higher than the average concentration measured in Lake Maggiore waters. Nevertheless, concentrations measured in Lake Maggiore fish were very close and sometimes exceeded the Maximum residue limits (MRLs) settled by the Italian legislation for foods (0.1 mg/kg w.w. for fish containing 5–20% lipid). It seems, therefore, that the 'environmental quality standard' of 0.2 ng/L cannot guarantee the suitability of fish for human consumption.  相似文献   

2.
Dichlorodiphenyltrichloroethane (DDT) is still used in Africa for the indoor control of malaria and it may represent a potential hazard for wildlife. The littoral sediments of two alkaline-saline lakes, Natron (Tanzania) and Bogoria (Kenya), in the Eastern Rift Valley, supporting large populations of lesser flamingos (Phoeniconaias minor), were analysed for DDT residues. Physical–chemical analyses (temperature, conductivity, pH and dissolved oxygen) were also performed on the water of the two lakes and in the tributaries of Lake Natron, to evaluate the influence of the environmental variables on pollutant occurrence. At Lake Natron, around 1 km from the sediment collection sites, tree leaves of Acacia tortilis were also collected. The main metabolite found in all sediment samples was pp’DDE, whilst equal concentrations of pp’DDT and pp’DDE were measured in acacia leaves. The levels of DDTs measured in the sediments were within 5.9–30.9 ng g−1 d.w., reaching the maximum value in a tributary of Lake Natron. On the whole, the contamination of Lake Natron and Lake Bogoria basins seems to be quite moderate. Nevertheless, the pp’DDE/pp’DDT ratio equals 1 in the Acacia tortilis leaves, which makes one suppose that the input of the parent compound was rather recent and could have been from aerial transport or dust from relatively close-by old pesticides storage sites.  相似文献   

3.
Eggs of the Great Crested Grebe (Podiceps cristatus) were collected from a breeding area on Lake Maggiore (Northern Italy) from 2001 to 2005 in the vicinity of a p,p'-DDT manufacturer, whose production was stopped in 1996. DDT homologue and PCB congener levels were determined and compared to levels in eggs collected from other breeding areas on Lake Maggiore and in a presumably less contaminated area on Lake Garda. Although Lake Garda eggs on average possessed a lower level of p,p'-DDE than Lake Maggiore eggs, they had significantly higher levels of PCBs and could not be used as a reference population for the measurement of eggshell thickness. Nevertheless, a negative linear relationship was found between p,p'-DDE concentration and eggshell thickness for eggs collected from both lakes, indicating a possible causal relationship. Testosterone and 17beta-estradiol concentrations were also determined for eggs collected from both lakes in 2004. Average concentrations of both hormones were the lowest in eggs from Lake Maggiore; however, the very high variability within broods did not result in any significant difference between the lakes.  相似文献   

4.
A dynamic aquatic model (DynA model) was previously developed to predict the fate of a chemical in aquatic scenarios characterized by daily or periodic changes in several input parameters. DynA model is here calibrated with data obtained from the literature in specific unsteady state scenarios, such as those of rice fields. The results obtained for two herbicides (cinosulfuron and pretilachlor) in rice paddy scenarios revealed the capability of the model to accurately predict water and sediment concentrations, as shown by some statistical indicators. Modelling efficiency (EF) values of 0.86-0.99 for the water compartment and of 0.77-0.84 for sediment show the good agreement between predicted and measured concentrations. An "external validation" was performed using measured data for a different herbicide (molinate) applied in a Portuguese paddy rice scenario. A sensitivity analysis for this volatile chemical revealed the influence of some climatic parameters (e.g. temperature) to the model outcomes, such as water and sediment concentrations. This confirmed the capability of DynA model as an efficient tool for the pesticide risk assessment in dynamic scenarios.  相似文献   

5.
Luo Y  Yang X 《Chemosphere》2007,66(8):1396-1407
This paper presented a framework for analysis of chemical concentration in the environment and evaluation of variance propagation within the model. This framework was illustrated through a case study of selected organic compounds of benzo[alpha]pyrene (BAP) and hexachlorobenzene (HCB) in the Great Lakes region. A multimedia environmental fate model was applied to perform stochastic simulations of chemical concentrations in various media. Both uncertainty in chemical properties and variability in hydrometeorological parameters were included in the Monte Carlo simulation, resulting in a distribution of concentrations in each medium. Parameters of compartmental dimensions, densities, emissions, and background concentrations were assumed to be constant in this study. The predicted concentrations in air, surface water and sediment were compared to reported data for validation purpose. Based on rank correlations, a sensitivity analysis was conducted to determine the influence of individual input parameters on the output variance for concentration in each environmental medium and for the basin-wide total mass inventory. Results of model validation indicated that the model predictions were in reasonable agreement with spatial distribution patterns, among the five lake basins, of reported data in the literature. For the chemical and environmental parameters given in this study, parameters associated to air-ground partitioning (such as moisture in surface soil, vapor pressure, and deposition velocity) and chemical distribution in soil solid (such as organic carbon partition coefficient and organic carbon content in root-zone soil) were targeted to reduce the uncertainty in basin-wide mass inventory. This results of sensitivity analysis in this study also indicated that the model sensitivity to an input parameter might be affected by the magnitudes of input parameters defined by the parameter settings in the simulation scenario. Therefore, uncertainty and sensitivity analyses for environmental fate models was suggested to be conducted after the model output was validated based on an appropriate input parameter settings.  相似文献   

6.
Significant knowledge gaps exist regarding the fate and transport of persistent organic pollutants like dichlorodiphenyltrichloroethane (DDT) in tropical environments. In Brazil, indoor residual spraying with DDT to combat malaria and leishmaniasis began in the 1950s and was banned in 1998. Nonetheless, high concentrations of DDT and its metabolites were recently detected in human breast milk in the community of Lake Puruzinho in the Brazilian Amazon. In this work, we couple analysis of soils and sediments from 2005 to 2014 at Puruzinho with a novel dynamic floodplain model to investigate the movement and distribution of DDT and its transformation products (dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) and implications for human exposure. The model results are in good agreement with the accumulation pattern observed in the measurements, in which DDT, DDE, and DDD (collectively, DDX) accumulate primarily in upland soils and sediments. However, a significant increase was observed in DDX concentrations in soil samples from 2005 to 2014, coupled with a decrease of DDT/DDE ratios, which do not agree with model results assuming a post-ban regime. These observations strongly suggest recent use. We used the model to investigate possible re-emissions after the ban through two scenarios: one assuming DDT use for IRS and the other assuming use against termites and leishmaniasis. Median DDX concentrations and p,p′-DDT/p,p′-DDE ratios from both of these scenarios agreed with measurements in soils, suggesting that the soil parameterization in our model was appropriate. Measured DDX concentrations in sediments were between the two re-emission scenarios. Therefore, both soil and sediment comparisons suggest re-emissions indeed occurred between 2005 and 2014, but additional measurements would be needed to better understand the actual re-emission patterns. Monte Carlo analysis revealed model predictions for sediments were very sensitive to highly uncertain parameters associated with DDT degradation and partitioning. With this model as a tool for understanding inter-media cycling, additional research to refine these parameters would improve our understanding of DDX fate and transport in tropical sediments.  相似文献   

7.
Concentrations of DDTs and PCBs were determined in the zooplankton and in three different fish species (shad, whitefish and roach) collected seasonally during 2009 and 2010 in three sites in Lake Maggiore, a south-alpine lake that has been contaminated by DDT since 1996. As previously observed in 2008, even during 2009 DDTs concentrations were higher in zooplankton than in fish, probably due to the very unstable situation of the lake still influenced by local inputs. The situation changed in 2010, when all DDT compounds increased in fish to levels much higher than those measured in zooplankton. Biomagnification was statistically demonstrated for pp′DDE in all the three fish species, indicating a probable signal of recovery of the lake.Although with respect to total PCBs we observed that the contamination levels varied across time periods and across fish species, biomagnification was evident from zooplankton to fish both in 2009 and in 2010. As concern individual PCBs, biomagnification from zooplankton to all three fish species was significant for PCB 153 and PCB 138.  相似文献   

8.

Background  

In the present study, we report the analytical results of pp′DDT, pp′DDE and pp′DDD determination in lake water, plankton and zooplanktivorous fish of Lake Maggiore (Northern Italy), rather recently polluted by DDT of industrial origin, in order to understand the bottom-up pollution transfer among the abiotic and biotic components of the lake ecosystem.  相似文献   

9.
The evolution over time of the levels and distribution of dichlorodiphenyltrichloroethane (DDT) in water, surface sediments, and fish from the River Cinca (Spain), a tributary of the River Ebro, during the period 1999 to 2004, was investigated by means of gas chromatography coupled with mass spectrometry. The sampling site corresponded to a point downstream from Monzón, a heavily industrialized town with drainage into the river. This river has historically been a source of emissions of DDT and its metabolites. The highest levels were found in 1999 and 2000, although the concentrations of organic compounds in sediments and fish have decreased since then. The levels of DDT in water were below the quantification limit during the period of study. The average composition of DDT isomers measured in sediments and fish showed the prevalence of p,p'-DDE, the product of aerobic degradation of p,p'-DDT. Concentrations in fish were compared with sediment samples, and high quotients indicate that they are highly bioavailable.  相似文献   

10.
Zebra mussel (Dreissena polymorpha) has been used for the biomonitoring of several POPs (PCBs, DDTs, HCB and HCHs) in the largest Italian subalpine great lakes (Lake Maggiore, Garda, Como, Iseo and Lugano). Samplings were carried out in April 2003 at 15 locations selected according to industrial and anthropic levels of lakes. Results have pointed out high DDT levels in D. polymorpha specimens from Lake Maggiore (700-1400 ng/g lipids, 5-9 times higher than those measured in mussels of other Italian lakes), due to a contamination from a chemical plant located on one of the main lake inlet that occurred in 1996. On the contrary, PCB levels (400-2509 ng/g lipids) highlighted an overall pollution, with some sporadic peaks of contamination. Data showed a moderate increase trend compared to those found in a previous monitoring campaign carried out in 1996. Future monitoring is needed in order to confirm this tendency.  相似文献   

11.
Tao S  Li BG  He XC  Liu WX  Shi Z 《Chemosphere》2007,68(1):10-16
Water, suspended solid (SS) and sediment samples were collected from nine water courses in Tianjin, China and analyzed for dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDXs, including o,p'-,p,p'-DDT, DDD and DDE). The average DDX concentrations in water, SS and sediment were 59+/-30 ng l(-1), 2690+/-1940 ng g(-1)dry wt. and 340+/-930 ng g(-1)dry wt., respectively. Due to the termination of the extensive agricultural application and industrial manufacture, DDXs in river sediment decreased by one order of magnitude since 1970's and low DDT fractions in these sediments were observed. Still, DDXs in the sediments near the outlets of the major manufacturers remained relatively high attributed to the historic input. DDXs in sediment were also positively correlated with organic matter content. Spatial distributions of DDXs in SS and water was different from that in sediment. For SS, a negative correlation between DDX concentration and SS content indicated a dilution effect in many rivers. Dissolved organic carbon content was the major factor affecting DDX concentrations in water phase. Wastewater discharged from dicofol manufacturers and likely illegal agricultural application were the primary reasons causing high DDT (DDE+DDD) ratios in SS and water.  相似文献   

12.
Binelli A  Provini A 《Chemosphere》2003,52(4):717-723
The Zebra mussel (Dreissena polymorpha), one of the most widely used bioindicators of persistent organic pollutants, trace metals and radionuclides in several worldwide freshwater ecosystems, has been used to monitor DDT contamination trends in Lake Maggiore since 1996, caused by industrial effluents on a tributary of the River Toce, one of the major affluents of the lake. Dreissena specimens were collected at two sampling sites, one within the Baveno Bay, where the River Toce flows, and the other outside (Villa Taranto). Total DDT levels (3119.6 ng/g lipids at Baveno and 1351.2 ng/g lipids at Villa Taranto) in the soft tissues of the Zebra mussel decreased at both stations by about 30-50% in the first year after the closure of the chemical plant reaching an almost steady-state condition. The high concentrations measured in Zebra mussel specimens of Baveno Bay in 2000 (1947 ng/g lipids) and the percentage of pp'DDE in comparison with total DDT concentration, which showed a slight increase in the last years, clearly indicate that a contamination source is still present, deriving probably from the lacustrine sediments and the River Toce. Data show that the environmental risk is very high within the Baveno Bay and the recovery time should be longer than in the other parts of the lake, where DDT levels in Dreissena are presently two times higher than those measured in the other Italian subalpine lakes.  相似文献   

13.
Zebra mussel (Dreissena polymorpha) is commonly used as contaminant bioindicator in Europe and North America. We used the zebra mussel to follow DDT pollution trends from 1996 to 1997 in Pallanza bay, Lake Maggiore, near the inlet of the River Toce, after a DDT-manufacturing plant discharging residues into a tributary of the River Toce had closed down. DDT contamination fell off sharply outside the bay, but tissue concentrations of the parent compound and residues remained high in molluscs sampled within the bay a year later. Molluscs collected in Pallanza bay in June 1997 released gametes earlier than those sampled at a nearby reference station. Histological studies showed that a significant percentage of these specimens showed marked oocyte degeneration suggesting that DDTs have endocrine-disrupting effects in this species.  相似文献   

14.
The marine fate and pelagic food chain transfer of three cyclic volatile methyl siloxanes (cVMS: D4, D5 and D6) was explored in the Inner Oslofjord, Norway, using two dynamic models (the Oslofjord POP Model and the aquatic component of ACC-HUMAN). Predicted concentrations of D4, D5, and D6 in the water column were all less than current analytical detection limits, as was the predicted concentration of D4 in sediment (in agreement with measured data). The concentrations predicted for D5 and D6 in sediment were also in broad agreement with measured concentrations from the Inner Oslofjord. Volatilisation was predicted to be the most important loss mechanism for D5 and D6, whereas hydrolysis was predicted to dominate for D4. Concentrations of all three compounds in sediment are controlled by burial below the active mixed sediment layer. The marine food web model in ACC-HUMAN predicted “trophic dilution” of lipid-normalised cVMS concentrations between zooplankton and herring (Culpea harengus) and between herring and cod (Gadus morhua), principally due to a combination of in-fish metabolism and reduced gut absorption efficiency (as a consequence of high KOW). Predicted D5 concentrations in herring and cod agree well with measured data from the inner fjord, particularly when measured concentrations in zooplankton were used to set the initial dissolved-phase aqueous concentrations. Predicted concentrations of D4 and D6 in fish were over- and under-estimated by the model – possibly due to extrapolation of the metabolism rate constant from D5.  相似文献   

15.
A large-scale sampling program was conducted to simultaneously collect surface water, overlying water, pore water, and sediment samples at monthly intervals between March and December 2010 from Baiyangdian Lake, North China to assess the distribution of DDTs and determine the net direction of sediment–water exchange. Total DDT concentrations ranged 2.36–22.4 ng/L, 0.72–21.9 ng/L, 2.25–33.7 ng/L, and 4.42–7.29 ng/g in surface water, overlying water, pore water, and sediments, respectively, which were at the intermediate levels compared to those of other area around the world. Seasonal variations of DDTs were featured by higher concentration in summer. This was likely associated with (a) the increase of land runoff in the summer and (b) application of dicofol and DDT-containing antifouling paints for ships in summer. Sediment–water fugacity ratios of the DDT isomers were used to predict the direction of the sediment–water exchange of these isomers. The sediment–surface water, sediment–overlying water, and sediment–pore water fugacity ratios of DDT isomers averaged 0.34, 0.44, and 0.1, which are significantly lower than the equilibrium status (1.0), suggesting that the net flux direction were from the water to sediment and the sediment acted as a sink for the DDTs. The difference of DDT concentrations between sediment and water samples was found to be an important factor affecting the diffusion of DDT from the water to sediment.  相似文献   

16.
17.
Escherichia coli (E. coli), enterococci, and fecal coliform data were collected and compared as potential indicators for swimmablility assessment of a brackish waterbody (Lake Pontchartrain, Louisiana). These indicators were measured during lake background conditions, in stormwater runoff (before dilution with lake water), and in the outfall plume within the lake following storm events. Microbial indicator titers associated with suspended particles and lake-bottom sediments were also investigated. Overall reduction rate constants for fecal coliform, E. coli, and enterococci in lake water and sediment were measured and reported. Attachment of microbial indicators to suspended matter and subsequent sedimentation appeared to be a significant fate mechanism. A slower reduction rate of indicator organisms in sediment further suggested that bottom sediment may act as a reservoir for prolonging indicator organism survival and added concern of recontamination of overlaying waters due to potential solids resuspension. Results indicated that enterococci might be a more stable indicator than E. coli and fecal coliform and, consequently, a more conservative indicator under brackish water conditions.  相似文献   

18.
The EQuilibrium Criterion (EQC) model developed and published in 1996 was recently revised to include improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis. This New EQC model was used to evaluate the multimedia, fugacity-based fate of decamethylcyclopentasiloxane (D5; CAS No. 541-02-6) in the environment over a temperature range of 1–25 °C. In addition, Monte Carlo uncertainty analysis was used to quantitatively determine the influence of temperature and input partitioning and reactivity data on the behavior of D5 under various emission scenarios. Results indicated that emission mode was the most influential factor determining the fate and distribution of D5 in the model environment. When emitted to air and soil, D5 partitioned to and remained in the air compartment where rates of removal from degradation and advection processes were relatively rapid. In contrast, D5 emitted to water resulted in a substantial mass fraction of D5 being accumulated in the sediment compartment, where rates of removal from degradation and advection processes were slow. The mass distributions and fate of D5 in the model environment were strongly influenced by multiple input parameters, including temperature, the mode of emission (especially emission rate to water), KOC and half-life in air. As temperature decreased from 25 °C to 1 °C, KOC and half-life in air became increasingly more influential such that the mass distribution of D5 increased in air and decreased in sediment, resulting in decreased overall persistence.  相似文献   

19.
Present status of POP contamination in Lake Maggiore (Italy)   总被引:6,自引:0,他引:6  
In the last decade, Lake Maggiore has been subject to heavy DDT contamination due to a chemical plant located near the main influent of the Baveno Bay. The freshwater bivalve zebra mussel (D. polymorpha) was used as a bioindicator of several POPs (DDTs, PCBs, HCB, HCHs) to follow their concentration trend after a heavy flood in autumn 2000. Sampling of mollusc specimens were carried out monthly from April 2001 to October 2002 at two different stations in and outside the bay. Results showed worsening of DDT pollution due to the transport of insecticide from contaminated sediments and soils still present in the closed chemical plant site. Levels of about 4.5 microg/g lipids in soft tissues of specimens from the most contaminated site and 2.0 microg/g lipids outside it were found, which are twice those measured before the flood. HCHs and HCB values were always very low, but it was noticed since winter 2001-2002 a sharp increase of PCB pollution, with values of about 3-4 microg/g lipids, not due to the 2000 flood, but probably to improper discharge or release of contaminated sediments from numerous dams located in the watershed. Concentrations of total dioxin-like PCBs reached dangerous levels for the water community. Fish consumption may be a risk for human health especially for resident population, bearing in mind that fish usually have a higher POP concentration than zebra mussel.  相似文献   

20.
Staples CA  Gulledge W 《Chemosphere》2006,65(4):691-698
Ethylene oxide (EO) is mainly used as a chemical intermediate and as a fumigant and sterilizing agent. Through its manufacturing and intended uses, EO may be released into the environment. Therefore, an assessment of the environmental significance of those potential emissions was conducted. Data were collected describing pertinent physical properties, degradation and other loss mechanisms that control the fate of EO in the environment. Available aquatic and terrestrial ecotoxicity data were assembled and used as the basis of calculating critical toxicity values to characterize hazard. Environmental compartment concentrations of EO were calculated using Level III fugacity-based modeling. Six scenarios were developed to account for different climatic conditions in various portions of the US. Finally, potential regional-scale risks to aquatic and terrestrial wildlife were determined. In the conceptual model that was developed in this assessment, EO diffuses into air, partitions between environmental compartments, is transported out of the different compartments via advection, and undergoes abiotic and biological degradation within each compartment. All known emissions within the continental USA were assumed to enter a modeled region roughly the size of the State of Ohio. Organisms (receptors) were assumed to dwell in both terrestrial and aquatic compartments. Receptors were assumed to include small mammals, soil invertebrates, water column (pelagic) organisms, and sediment benthos. The goal of this assessment was to characterize any potential adverse risks to terrestrial and aquatic wildlife populations. Hazard Quotients (HQ) were calculated by dividing predicted concentrations of EO in air, water, sediment, and soil by their critical toxicity values. Maximum calculated HQ values in air were 1.52x10(-7), in water were 1.17x10(-5), in sediment were 2.25x10(-4), and in soil were 1.37x10(-5). The results of this assessment suggest that EO as currently manufactured and used does not pose adverse risks to aquatic or terrestrial wildlife. In all cases, the HQ values were much less than the maximum desired HQ value of 1.0 (4,400-6,600,000 times), indicating that the potential for diffuse emissions of EO to pose adverse environmental risks is quite low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号