首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During two expeditions of the R.V. Polarstern to the Arctic Ocean, pack ice and under-ice water samples were collected during two different seasons: late summer (September 2002) and late winter (March/April 2003). Physical and biological properties of the ice were investigated to explain seasonal differences in species composition, abundance and distribution patterns of sympagic meiofauna (in this case: heterotrophs >20 µm). In winter, the ice near the surface was characterized by extreme physical conditions (minimum ice temperature: –22°C, maximum brine salinity: 223, brine volume: 5%) and more moderate conditions in summer (minimum ice temperature: –5.6°C, maximum brine salinity: 94, most brine volumes: 5%). Conditions in the lowermost part of the ice did not differ to a high degree between summer and winter. Chlorophyll a concentrations (chl a) showed significant differences between summer and winter: during winter, concentrations were mostly <1.0 µg chl a l–1, while chl a concentrations of up to 67.4 µmol l–1 were measured during summer. The median of depth-integrated chl a concentration in summer was significantly higher than in winter. Integrated abundances of sympagic meiofauna were within the same range for both seasons and varied between 0.6 and 34.1×103 organisms m–2 in summer and between 3.7 and 24.8×103 organisms m–2 in winter. With regard to species composition, a comparison between the two seasons showed distinct differences: while copepods (42.7%) and rotifers (33.4%) were the most abundant sea-ice meiofaunal taxa during summer, copepod nauplii dominated the community, comprising 92.9% of the fauna, in winter. Low species abundances were found in the under-ice water, indicating that overwintering of the other sympagic organisms did not take place there, either. Therefore, their survival strategy over the polar winter remains unclear.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
Silicon and carbon uptake rates were studied over a 24 h light/dark cycle in a synchronised culture of the marine diatom Cylindrotheca fusiformis (Reimann et Lewin) using 32Si and 14C. The silicic acid uptake rate per cell (cSi) varied between 1.2 and 20.0 fmol Si cell–1 h–1 and was closely correlated to the G2+M phase of the cell cycle. A linear and significant relationship was determined between the percentage of cells present in G2+M and cSi. Evolution of the soluble free-silicon pool was studied simultaneously. The concentration of the total soluble free pool of silicon (QPSi) varied from 1% to 7% of the total silicon content. A significant difference of 1.5 fmol Si cell–1 between QPSi and the labelled free pool (QnpSi) was measured, indicating the presence of an unlabelled fraction of the pool. The concentration of QnpSi was around 1.0 fmol Si cell–1 prior to cell division and did not change as a function of cSi, which indicated a feedback mechanism coupling uptake into the free pool and incorporation into the frustule. In parallel, 14C uptake variation (cC) was measured during the division of the population. The value of cC varied between 0.44 and 0.78 pmol C cell–1 h–1 and appeared to be maximal when cells were in the G1 phase. This variation of cC marginally affected the total carbon content of the cells (QTC) in comparison with the light/dark cycle. The variations in the Si/C ratio, from 0.021 to 0.046, demonstrated the different control mechanisms of Si and C metabolisms during the course of the cell- and photocycle.Communicated by S.A. Poulet, Roscoff  相似文献   

3.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

4.
A study of otolith aging and growth-rate variation in the flyingfish Hirundichthys affinis (Günther) was conducted in the eastern Caribbean (10–16°N; 58–62°W) in 1987–1989. Daily otolith-increment formation was validated in laboratory-reared larvae, confirming the usefulness of otolith-increment counts for age determination of H. affinis juveniles (<150 mm fork length, FL). A mark-recapture programme to validate increment formation in wild adults was unsuccessful due to tetracycline-linked mortality and insufficient tetracycline uptake in slow-growing adult otoliths. A von Bertalanffy growth curve fitted to juvenile size-at-age data gave preliminary growth-curve parameters of t 0=2.85 d and k=0.00854 on a daily basis, with an asymptotic length, L, of 245 mm FL, for eastern Caribbean flyingfish. Juvenile growth rate in H. affinis is sensitive to spatial and temporal variation in temperature. Growth rates were higher where sea-surface temperatures were higher, and were higher for juveniles hatched in warmer months (April–July) than in colder months (November–March). Growth rates were also higher near islands than at more oceanic locations. Variation in juvenile growth rates may influence the spatial and temporal variation in spawning frequency observed in H. affinis.  相似文献   

5.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

6.
Phytoplankton species diversity was generally high throughout the year at two stations in the central Red Sea (Lat. 21°30N), and species of Mediterranean and Indian Ocean origin were represented, reflecting seasonal monsoonal influence. Low phytoplankton cell numbers accompanying high production rates suggest the significance of nanoplankton or picoplankton which were not enumerated. Production was high year-round, and averaged 390 gC m-2 yr-1, despite the virtual lack of nutrient additions from rainfall or land runoff or demonstrable upwelling. Highest nutrient levels followed the first seasonal peak of production. Biomass and production were seasonally bi- or tri-modal, with major peaks in December–February and June–August, 1977–1978. The first peak of production, populated by diatoms, occurred at the onset of seasonal stratification, but the second peak, populated by Trichodesmium spp., occurred at the height of seasonal stratification and lowest nutrient concentrations. There is no clear relationship between the timing of monsoon activity and the annual production cycle.  相似文献   

7.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

8.
There is increasing evidence that suspension feeders play a significant role in plankton–benthos coupling. However, to date, active suspension feeders have been the main focus of research, while passive suspension feeders have received less attention. To increase our understanding of energy fluxes in temperate marine ecosystems, we have examined the temporal variability in zooplankton prey capture of the ubiquitous Mediterranean gorgonian Leptogorgia sarmentosa. Prey capture was assessed on the basis of gut content from colonies collected every 2 weeks over a year. The digestion time of zooplankton prey was examined over the temperature range of the species at the study site. The main prey items captured were small (80–200 µm), low-motile zooplankton (i.e. eggs and invertebrate larvae). The digestion time of zooplankton prey increased when temperature decreased (about 150% from 21°C to 13°C; 15 h at 13°C, 9 h at 17°C, and 6 h at 21°C), a pattern which has not previously been documented in anthozoans. Zooplankton capture rate (prey polyp–1 h–1) varied among seasons, with the greatest rates observed in spring (0.16±0.02 prey polyp–1 h–1). Ingestion rate in terms of biomass (g C polyp–1 h–1) showed a similar trend, but the differences among the seasons were attenuated by seasonal differences in prey size. Therefore, ingestion rate did not significantly vary over the annual cycle and averaged 0.019±0.002 g C polyp–1 h–1. At the estimated ingestion rates, the population of L. sarmentosa removed between 2.3 and 16.8 mg C m–2 day–1 from the adjacent water column. This observation indicates that predation by macroinvertebrates on seston should be considered in energy transfer processes in littoral areas, since even species with a low abundance may have a detectable impact.Communicated by S.A. Poulet, Roscoff  相似文献   

9.
Transbranchial potentials (TP) and sodium or chloride fluxes were measured in an apparatus designed for the simultaneous perfusion of eight isolated gills of Uca rapax. In anterior gills perfused with U. rapax–saline (US) the TP varied almost linearly from-7.5 to +10 mV inside, and in posterior gills from +2 to-8.5 mV (inside), on exposure to salinities ranging from 8.7 through 52, i.e. 25 to 150% seawater (100%=34.6 S). Sodium influx and efflux in anterior gills exposed to US, 8.7 or 43.3 S (0.7 to 4.0 mmol h–1 g–1 dry wt) were always greater than in posterior gills (0.5 mmol h–1). The chloride fluxes were slightly smaller than sodium fluxes in anterior gills, while in the posterior gills the chloride influx (2.8 to 4.6 mmol h–1) was always larger than chloride efflux (0.6 to 1.1 mmol h–1) or the sodium fluxes. At least three ion-transport mechanisms may be present in these gills: (1) an internal ( = basolateral), ouabain-sensitive Na+, K+ pump, restricted to anterior gills; (2) a furosemide-sensitive Na+, K+, 2Cl (plus water) transporter, apparently restricted to posterior gills, and (3) a Na+ exchanger (and possibly other as yet unidentified ion transporters, as suggested by large increases of the chloride influxes caused by amiloride), probably located on the apical membranes of the epithelial cells of both gill types. The differential selectivity of the gills of U. rapax for sodium or chloride may limit the transbranchial movements of either ion, without a reduction of the overall permeability of these crabs.Communicated by N.H. Marcus, Tallahassee  相似文献   

10.
Beryllium and aluminium contents in uncontaminated soils from six countries are reported. The means and ranges of beryllium in the surface soils were as follows: 1.43(0.20–5.50)g g–1 in Thailand (n=28), 0.7 (0.31–1.03) g g–1 in Indonesia (n=12), 0.99(0.82–1.32) g g–1 in New Zealand (n=3), 0.58(0.08-1.68)g g–1 in Brazil (n=16), 3.52(2.49–4.97)g g–1 in the former Yugoslavia (n=10), and 1.56(1.01–2.73) g g–1 in the former USSR (n=8). The mean and range of beryllium contents of the surface soils in Japan (1.17(0.27–1.95)g g–1 n=27) are situated within the values of the soils from these countries except for the Yugoslav soils derived from limestones. The mean of the mean beryllium contents of the surface soils in all these countries is 1.42 g g–1 which will be used as a tentative average content of beryllium in uncontaminated surface soils, except for the soils derived from parent materials high in beryllium content. The beryllium contents of the subsoils were higher than those of the surface soils in New Zealand and Yugoslavia as is the case with Japan. The correlation coefficient between the contents of beryllium and aluminium in all the soil samples (n=113) including surface soils and subsoils was 0.505 (p < 0.001).  相似文献   

11.
The influence of 49 combinations of salinity (10–40 S, at 5 S intervals) and temperature (0°–30°C, at 5C° intervals) on the maximum daily division rate (K) and 18 combinations of light intensity (six levels) and temperature (5°, 15°, and 25°C) on photosynthesis, cell division, and chlorophyll a was examined using two clones of Thalassiosira rotula Meunier isolated from the upwelling area of Baja California (clone C8) and from Narragansett Bay, Rhode Islands (clone A8). Physiological differences appear to characterize these to clones with regard to their temperature tolerance (C8 5°–30°C, A8 0°–25°C), maximum growth rate (C8 K=2.9, A8 K=2.4), chlorophyll a content, and in the rates of growth and photosynthesis in response to light intensity and temperature. Optimum salinity for both clones (25–30 S) was generally independent of temperature, while chlorophyll a content decreased with temperature. T. rotula is a cosmopolitan paractic species; experimental studies indicate that it is eurythermal and moderately euryhaline. Comparison of five additional Narragansett Bay isolates of T. rotula reveal minimal spacial or temporal variability in genetically determined physiological characteristics within this local population.  相似文献   

12.
Juveniles of the prawnPenaeus chinensis (3.96 ±0.18 cm, 0.36±0.06 g) reared in Taiwan in 1989 were exposed to different concentrations of ammonia and nitrite, by a static renewal method in 33 seawater at pH 7.94 and at 26 °C. The 24, 48, 96 and 120 h LC50 (median lethal concentration) of ammonia were 3.29, 2.10, 1.53 and 1.44 mg l–1 for NH3-N (un-ionized ammonia as nitrogen) and 79.97, 51.14, 37.00 and 35.09 mg l–1 for ammonia-N (un-ionized plus ionized ammonia as nitrogen). The 24, 96, 120, 144 and 192 h LC50 of nitrite-N were 339, 37.71, 29.18, 26.98 and 22.95 mg l–1. The LC50 decreased with increasing exposure time. During the first 96 h,P. chinesis juveniles were more susceptible to ammonia than nitrite. However, prawns were less tolerant to nitrite than ammonia when exposed for more than 96 h. The threshold was found at 120 and 192 h for ammonia and nitrite, respectively, on the toxicity curves. Incipient LC50 was 1.44 mg l–1 for NH3-N, 35.09 mg l–1 for ammonia-N and 22.95 mg l–1 for nitrite-N. The safe value forP. chinensis juveniles was 0.14, 3.51 and 2.30 mg l–1, respectively.  相似文献   

13.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

14.
We examined the ability of Capnella gaboensis Verseveldt, 1977 (Coelenterata: Octocorallia: Alcyonacea: Nephtheidae) to utilize heterotrophic food sources, and the importance of heterotrophic nutrition and photosynthesis in its diet, by using preserved material and histological sections of field-collected specimens and by means of laboratory experiments in which coral branches were fed with 14C-labelled food of different sizes. The study was conducted from April 1982 to August 1984. C. gaboensis receives nutrition from the photosynthesis of its symbiotic zooxanthellae, Symbiodinium sp., and from heterotrophic sources. Up to 10% of the algal photosynthate was translocated to the animal-host tissues. The contribution of translocated carbon from the zooxanthellae to the daily respiratory carbon requirement of the animal was estimated to be well below 50% in all seasons except in the summer of 1983–1984, indicating that the coral must rely on additional sources of nutrition (i.e., heterotrophy) for most, if not all, of the year. Field (Sydney Harbour: 33°50S; 151°15E) and laboratory observations and experiments indicated that this coral probably feeds upon zooplankton, small particulate matter and dissolved organic matter.  相似文献   

15.
Swimming efficiency (the ratio of thrust power required to overcome hydrodynamic drag to net metabolic energy expenditure) was calculated for the vertically migrating euphausiid Euphausia pacifica swimming at speeds of 1–20 cm s–1 and at temperatures of 8° and 12°C. Efficiencies ranged from 0.014 to 2.8% at 8°C and 0.009 to 1.69% at 12°C. A comparison with efficiency in fishes 2–3 orders of magnitude larger in weight (efficiency range 10–25%) indicates that locomotion in E. pacifica is far less efficient, a probable result of the organism's small size (x=33.5 mg WW) and multiple-paddle mode of propulsion. Net cost of transport of E. pacifica is three to six times the cost of a hypothetical value for sockeye salmon. Low swimming efficiencies in zooplankton such as E. pacifica are responsible for the underestimation of zooplankton swimming costs. Multiple-paddle propulsion is less efficient than the undulatory mode of fishes.  相似文献   

16.
The EPA lead model predicts mean blood lead levels and risk of elevated blood lead levels in children based on lead uptake from multiple sources. In the latest model versions, environmental data from individual homes within a community can be used to predict the overall blood lead distribution and percent risk of exceeding a specific blood lead level (i.e. 10 g dl–1). Recent criteria used by the EPA to evaluate this information include no more than 5% of houses with a greater than 5% lead risk, and a community weighted-average risk below 5%. Environmental (primarily soil) and blood lead data from a residential community near a smelter were used to illustrate recent uses of the model. Scheduled remediation in the community will remove soil for approximately 60% of the houses (i.e. those with lead levels > 1000 mg kg–1). After remediation, the model results indicate a relatively low community risk (0.5–1.9%), although the percentage of houses with lead risks above 5% ranged from 3 to as high as 13%, depending on the variation in blood lead and assuming the model's 7 g dl–1 increase in blood lead with each 1000 mg kg–1 increase in soil lead level. A comparison of the limited blood lead data with soil lead levels below 1000 mg kg–1, however, indicated no apparent relationship. Given these uncertainties, less invasive actions than additional soil removal (e.g. exposure intervention, monitoring conditions, and follow-up as necessary) may be appropriate under the new EPA guidance for lead in soil.  相似文献   

17.
The energetic cost associated with salinity acclimation was determined in the marine gastropodThais haemastoma by direct calorimetry under normoxic and anoxic conditions. Snails were collected from Caminada Pass near Grand Isle, Louisiana (Longitude 90°2W; Latitude 29°2N) in September 1987. Metabolic heat flux of snails acclimated to and measured at 10 or 30 S was similar at 15.06 or 16.39 J g–1 dry wt h–1, respectively, (corresponding to 0.76 or 0.83 ml O2 g–1 dry flesh wt h–1) under normoxic conditions, and 2.39 or 2.53 J g–1 dry wt h–1 under anoxic conditions. Inter-individual variability was high, obscuring the effect of salinity gradient on heat flux. When standardized to the pre-transfer control level of each individual under anoxic conditions, a significant increase (55%) of energy expenditure was observed for snails transferred to hyperosmotic conditions. In contrast, heat flux varied insignificantly in individuals in the anoxic 30 to 10 S transfer. After transfer of individuals from 10 to 30 S under normoxic conditions, heat flux was depressed initially to 38% of the control rate, but recovered after 14 h to a higher metabolic rate (56%) than the pre-transfer control rate. After transfer of individuals from 30 to 10 S under normoxic conditions, the standardized heat flux decreased to 28% of the control rate, followed by a 20 h period of recovery to the control rate. The energy cost of intracellular hypoosmotic regulation was less than hyperosmotic regulation under anoxic conditions. The retraction of the foot ofT. haemastoma after normoxic salinity transfers did not generally correlate with the time course of metabolic heat flux.  相似文献   

18.
The recolonization by harpacticoid copepods of patches disturbed by stingrays [Dasyatis sabina (LeSeur)] feeding in a subtidal (2–3 m depth) site off the Florida gulf coast (Lat. 29°54.55N, Long. 84°31.45W) was followed. Samples from disturbed patches could no longer be distinguished from control samples in terms of numbers of harpacticoids 29 h after disturbance. No species became significantly disproportionately abundant during the recovery suggesting that small-scale natural disturbances are not an important organizing force in this community.  相似文献   

19.
Sediment and water samples were collected by submersible in September 1986 at 16 locations on the carbonate cap overlying a conical diapir, which was formed by the upward migration of oil and gas through a subsurface fault on the continental slope off Louisiana, USA (27°47N; 91°30.4W). The biological community at the site was photographed quantitatively with still and video cameras. Rigorous spatial sampling indices were maintained so that variation in chemical parameters and in the abundance of photographed organisms could be estimated within the bounds of the study site. Concentrations of extractable organic material (EOM) ranged from 0.24 to 119.26 in the sediment samples, while methane concentrations in the water samples were from 0.037 to 66.474 M. The visible biological community was predominantly composed of the chemosynthetic tube worms (Vestimentifera) Lamellibrachia sp. and Escarpia sp., and an undescribed, methane-oxidizing mussel (Mytilidae: Bathymodiolus-like), as well as diverse non-chemosynthetic organisms. The ranked abundance of tube worms was significantly correlated (p<0.05) with the concentration of EOM in the sediment samples, while the abundance of mussels was significantly correlated (p<0.05) with the concentration of methane in the water samples. Tube worms and mussels both occurred in dense clusters; however, the clusters of mussels had a more restricted distribution within the study site than did clusters of tube worms. Both organisms were most abundant in the vicinity of the subsurface fault.  相似文献   

20.
Deployment of artificial substrata is a common method of investigating early community development and recruitment, but rarely are such experiments of long enough duration to include even year time scales. We placed replicate, machined-slate panels (15×15 cm) in the intertidal and at depths of 6 and 12 m at two sites of differing flow rate at Lough Hyne, SW Ireland. These were serially replaced every 30–60 days for a period of 5 years (1997–2002), except in the intertidal (2000–2002). The number and identity of all recruits were recorded. Recruitment varied over several orders of magnitude both on temporal and spatial scales. The greatest source of variability was between the intertidal (with few species or recruit numbers) and the subtidal zones (many species, some with thousands of recruits per panel per 30 days). Highest levels of recruitment occurred at the low-flow site (Labhra Cliff). Here, recruitment was dominated by the serpulid polychaete, Pomatoceros sp., reaching ~4000 individuals per panel per 30 days. Highest species richness occurred, however, at the high flow site (Whirlpool Cliff). At this site more colonial forms (e.g. bryozoans) settled. Season was found to be the dominant pattern explaining subtidal recruit and species number variability. Year, however, was the dominant temporal pattern explaining change in diversity (Shannon–Wiener H). In space, depth explained most variability of recruit numbers, whereas site explained more variation in species richness. Both these spatial factors contributed similarly to variability of diversity (H). Recruitment has long been known to vary considerably over large spatial scales, such as with latitude and isolation, but we that show changes of a similar magnitude in recruitment can occur across small spatial scales. Individual taxa showed varied temporal patterns of recruitment including continuous, regular seasonal fluctuations and irregular pulses in particular years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号