首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biobased epoxy containing epoxidized linseed oil (ELO) and its clay nanocomposites were processed with an anhydride curing agent. The certain amount of diglycidyl ether of bisphenol F (DGEBF) was replaced by ELO. The selection of the DGEBF, ELO, an anhydride curing agent, and organo-montmorillonite clay resulted in an excellent combination, to provide new biobased epoxy/clay nanocomposites showing high elastic modulus, high glass transition temperature, and high fracture toughness with larger amount of ELO. Izod impact strength was almost constant while changing the amount of ELO. This is a promising result for future applications in different engineering industries.  相似文献   

2.
Biobased polyurethanes from soybean oil–derived polyols and polymeric diphenylmethane diisocyanate (pMDI) are prepared and their thermomechanical properties are studied and evaluated. The cross-linked biobased polyurethanes being prepared from soy phosphate ester polyols with hydroxyl contents ranging from 122 to 145 mg KOH/g and pMDI within 5 min of reaction time at 150°C in absence of any catalyst show cross-linking densities ranging from 1.8 × 103 to 3.0 × 103 M/m3, whereas glass transition temperatures vary from approximately 69 to 82°C. The loss factor (tan ) curves show single peaks for all these biobased polyurethanes, thus indicating a single-phase system. The storage moduli (G) at 30°C range from 4 × 108 to 1.3 × 109 Pa. Upon postcure at 150°C, the thermomechanical properties can be optimized. Cross-link densities are improved significantly for hydroxyl content of 139 and 145 mg KOH/g at curing time of 24 h. Similarly, glass transition temperature (Tg) and storage moduli around and after Tg are increased. Meanwhile, tan intensities decrease as result of restricted chain mobility. Longer exposure time (24 h) induces thermal degradation, as evidenced by thermogravimetric analysis (TGA). The dynamic mechanical (DMA) analysis shows that postcure at 100°C for times exceeding 24 h also leads to improved properties. However, cross-linking densities are lower compared to postcure carried out at 150°C.  相似文献   

3.
A large amount of leather waste is generated from tanning industries and most of which are disposed of landfill or discharged into the natural water bodies without any treatment, causing environmental problems. The aim of this study is to develop eco-biocomposites using waste leather buff (WLB) as filler in Polylactic acid (PLA) matrix to reduce the environmental issues and provide sustainable solution. WLB/PLA composites were prepared by twins-screw micro extruder varying the WLB content from 2% to 30 wt%. These composite were extensively characterise by several techniques. Tensile properties of the composites showed addition of WLB resulted in improvement of tensile property of composite and reduction in percentage crystallinity of PLA matrix observed with increase in WLB content. The effect of WLB on properties of interfacial adhesion and dispersion in WLB/PLA composites were studied by SEM. Wettability of composites was tested by contact angle and water absorption studies. WLB/PLA composite showed increase in water absorption with WLB loading. These WLB/PLA composite could be used to develop low cost eco-friendly product material.  相似文献   

4.
5.
Agricultural wastes, oil palm trunk (OPT) veneer and oil palm empty fruit bunch (EFB) mat were used for the preparation of hybridized plywood using 250 and 450 g/m2 of urea formaldehyde (UF) as gluing agent. The mechanical (flexural strength, flexural modulus, screw withdrawal, shear strength), physical (density, water absorption, thickness swelling and delamination) and thermal (TGA) properties of the biocomposites were studied. Images taken with a scanning electron micrograph (SEM) indicated an improvement in the fiber–matrix bonding for the laminated panel glued with 450 g/m2 of UF.  相似文献   

6.
In this work, performance of cow dung (CD) reinforced poly(lactic acid) (PLA) biocomposites was investigated for the potential use in load bearing application. CD of average 4 mm size was blended with PLA at different CD ratios (0–50 wt%) and their effects on the biocomposite properties were studied. The results showed an improvement in the flexural properties, while the tensile and impact strength dropped by 20 and 28% with the addition of 50% CD. The decline in the tensile and impact strength was due to micro-cracking and voids formation at higher CD content. Also, the incorporation of CD slightly decreased the thermal stability of the biocomposite. However, dynamic mechanical properties of the biocomposites generally improved. SEM analysis of tensile and impact fractured surfaces indicated that the CD had a reasonable adhesion with matrix. Moreover, the SEM micrographs of soil burial studies showed an accelerated degradation of higher CD wt% biocomposites.  相似文献   

7.
Biocomposites from soy based bioplastic and chopped industrial hemp fiber were fabricated using twin-screw extrusion and injection molding process. Soy based bioplastics were prepared through cooking with plasticizer and blending with biodegradable poly(ester amide). Mechanical, thermal properties and fracture surface morphology of the “green”/biocomposites were evaluated with universal testing system (UTS), dynamic mechanical analysis (DMA), Environmental Scanning Electron Microscopy (ESEM). It was found that the tensile strength and modulus, flexural strength and modulus, impact strength and heat deflection temperature of industrial hemp fiber reinforced biocomposites significantly improved. The fracture surfaces showed no signs of matrix on the fiber surface suggesting poor interfacial adhesion.  相似文献   

8.
Biobased polyols were synthesized from rapeseed oil (RO) with diethanolamine (DEA), triethanolamine (TEA) and glycerol (GL) at different molar ratios. The structures of the synthesized polyols were analyzed using FTIR-ATR spectroscopy. Polyurethane (PU) networks from RO/DEA polyols and polymeric MDI showed higher tensile strength, modulus and hardness, but their elongation at break decreased, compared to the case of the PU obtained from RO/TEA and RO/GL polyols. The tensile strength and modulus of PU networks increased with increasing PU cohesion energy density (CED) and decreasing molecular weight between crosslinks M c . From the thermogravimetric analysis and its derivative thermograms, at the first stage of destruction (below 5 % weight loss) in the air and inert atmosphere, the PU obtained from RO polyols were ranked in the following order: PU RO/GL > PU RO/TEA > PU RO/DEA, and their thermostability was higher than that of the PU based on propylene oxide.  相似文献   

9.
The urban solid waste problem has been one of the biggest environmental challenges these days. In this context, developing biocomposites with improved performance by using various sources and wastes has been intensified in the last decades for economic and environmental points of view. In this study, physical behavior, fungal decay and termite attack tests were conducted in laboratory conditions to investigate the performance of composites developed from TetraPak and textile wastes. All the results were compared to standard wood products. The water swelling properties strongly decreased in the manufactured TetraPak composites when compared with the conventional particleboard panels. The fungal decay resistance tests revealed that the stand alone TetraPak based composites were not completely resistant to wood-decaying fungi. A significant amelioration in the decay durability was observed for the manufactured TetraPak composites compared to the standard wood samples. Durability classes were determined according to the criteria given in the European standard (CEN/TS15083-1). Interestingly, the data indicated that the increment of the wool waste proportion in the produced boards lead to a significant enhancement counter the test fungi. The results of termite screening test showed further considerable resistance for whole TetraPak based composites against termites when compared to traditional wood samples. Such panels could be an available alternative without any additives for wood based composite structures and it can be used in a wide range of applications.  相似文献   

10.
11.
Increased environmental awareness and interest in long-term sustainability of material resources has motivated considerable advancements in composite materials made from natural fibers and resins, or biocomposites. In spite of these developments the lower stiffness and strength of biocomposites has limited their applications to non-load-bearing components. This paper presents an overview of a study aimed at showing that the shortcomings of biocomposites can be overcome through hybrid material designs and efficient structural configurations to make them suitable for load bearing structural components. Hybrid blends of natural and synthetic fibers can significantly improve the characteristics of biocomposites with minimal cost and environmental impact, and hierarchical cellular designs can maximize material efficiency in structural components. Periodic and hierarchical cellular plate designs made from natural fibers and unsaturated polyester resin were evaluated experimentally and analytically. Stiffness, strength, and dimensional stability of all-biocomposite and hybrid natural–synthetic material systems were evaluated through material tests while structural performance of cellular plate designs was assessed through flexural tests on laboratory-scale samples. The experimental results were correlated with analytical models for short-fiber composites and cellular structures. The results showed that biocomposites have adequate short-term performance and that they can efficiently compete with housing panels made from conventional structural materials.  相似文献   

12.
Journal of Polymers and the Environment - Polymers based on the furanic compounds derived from renewable carbohydrates have seen massive growth due to their unique properties and increasing...  相似文献   

13.
Journal of Polymers and the Environment - Biobased poly(1,3-propylene 2,5-furandicarboxylate) (PPF) and carbon nanotubes (CNTs) nanocomposites were prepared by a solution and coagulation method at...  相似文献   

14.
Ionic liquids (ILs) have been accepted as ‘green’ alternatives to the organic solvents in a range of synthesis, catalysis and electrochemistry, because of their distinctive chemical and physical properties. In this investigation, N,N′-(pyromellitoyl)-bis-l-tyrosine dimethyl ester as a chiral bioactive diphenolic monomer was prepared in three steps. The polycondensation of this monomer with various aromatic and aliphatic diisocyanates such as 4,4′-methylene-bis-(4-phenylisocyanate) (6a), toluylene-2,4-diisocyanate (6b), isophorone diisocyanate (6c) and hexamethylene diisocyanate (6d) were carried out in the presence of tetrabutylammonium bromide as a molten IL under microwave irradiation conditions and was compared with polymerization in traditional solvent like N-methyl-2-pyrrolidone. The results show that IL efficiently absorbs microwave energy, thus leading to a very high heating rate. Thus IL method is safe and green since toxic and volatile organic solvents were eliminated. All of the novel poly(urethane-imides) (PUIs) showed good solubility in various organic solvents. The obtained new polymers were characterized with FT-IR, 1H-NMR, elemental and thermogravimetric analysis techniques. Thermogravimetric analysis (TGA) of two representative PUIs demonstrated that they are rather thermally stable. In vitro toxicity studies showed that the synthetic materials are biologically active and they are nontoxic to microbial growth then could be classified as bioactive and biodegradable compounds.  相似文献   

15.
Biocomposites of acrylonitrile butadiene rubber (NBR) reinforced with chicken feather fibre (CF) were prepared using dicumyl peroxide (DCP) as vulcanizing agent. Composites with three series of chicken feather fibres were studied i.e., raw (RCF), sterilized (SCF) and alkali treated (ACF). The cure characteristics of composites were studied. The mechanical properties of NBR were found to be improved by the incorporation of chicken feather fibre in all forms. Surface modification of the fibre was done by alkaline treatment to improve the interfacial adhesion and it characterised by FTIR. Better properties are shown by the composites with ACF. The swelling behaviour of the composites in N,N-dimethylformamide, acetonitrile, dimethyl sulfoxide and water were analyzed for the swelling coefficient values. The biodegradable characteristics of CF reinforced NBR composites were studied by soil burial test which indicated that it is an eco-friendly and acceptable material. Scanning electron microscopy studies support the results of mechanical properties. The outcome obtained from this study is believed to assist the development of environmentally–friendly composites especially for specific product applications like oil seals, hoses and automobile bushes etc.  相似文献   

16.
In this study, a novel horizontal rotating soil washing process and equipment were developed and tested for pilot-scale remediation of soils from a site polluted by chromium ore process residue. Operating parameters, including cylinder rotational velocity, cylinder tilt angle, heating temperature and liquid/soil ratio, were investigated. The Taguchi method was used for the experiment design, and the standard L16 orthogonal array with four parameters and four levels was selected for optimising the operating parameters. Optimal removal efficiency was achieved at cylinder rotational velocity of 2.5 rpm, cylinder tilt angle of 2.6°, heating temperature of 200 °C and liquid/soil ratio of 8. The efficiency of citric acid as an extractant in the novel process was compared with that of water. The analysis of the residual Cr(VI) concentration of the soil shows that citric acid could efficiently remove 22.89 % more Cr(VI) than water in one-stage washing. The residual Cr(VI) concentration in the soil after the three-stage washing is as low as 26.16 mg/kg, which meets the screening levels for soil environmental risk assessment of sites in Beijing City (30 mg/kg). Further study is currently underway to optimise the novel process and equipment for commercial-scale use.  相似文献   

17.
Poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) blends with different levels of chain extender were prepared and cast into films. The effect of chain extender on the mechanical, thermal and barrier properties of the films were investigated. With the inclusion of the chain extender, the compatibility and interfacial adhesion between the two polymer phases were significantly improved by a mean of forming a PLA–chain extender–PPC copolymer. Reactions between the chain extender, PLA and PPC were observed through FTIR study. SEM study also confirmed the improved compatibility and interfacial adhesion. The elongation at break of the compatibilized film with optimal amount of chain extender showed dramatic increase by up to 1940 %. DSC studies revealed that chain extender hindered the crystallization of the film which explained the decrease in both water and oxygen barrier when adding chain extender. PLA was found to be able to enhance both oxygen and water barrier of the blend as compared to neat PPC, while in the case of the blend with chain extender, oxygen and water barrier properties exhibited reduction at the beginning. However, when increasing chain extender concentration, these two barrier performance exhibited an upward trend. It was found that PLA/PPC blend showed much better oxygen barrier property than both parent polymers, which can be ascribed to the acceleration effect of PPC on the crystallization of PLA.  相似文献   

18.
Poly(butylene succinate) (PBS) was melt blended with glycerol based polyesters (PGS) synthesized from pure and technical glycerol aiming to improve the impact strength of PBS. It was found that after addition of 30 wt% PGS to PBS its impact strength was significantly increased by 344% (from 31.9 to 110 J/m) and its elongation at break was maintained at 220%. Infrared spectra of the blends showed the presence of hydroxyl groups from the PGS phase suggesting that hydrogen bonding between the phases could be responsible for a good stress transfer and an efficient toughening in the PBS/PGS blends. Scanning electron microscopy imaging showed a good dispersion of PGS phase into PBS with a PGS particle size of 10 μm and less and no agglomeration. Addition of PGS to PBS was shown to be an effective strategy for improvement of PBS impact resistance without serious detrimental effects on its thermal and rheological properties.  相似文献   

19.
20.
Journal of Polymers and the Environment - Biocomposites based on polyethylene from renewable resources derived from sugar cane as raw material were modified with phosphonium ionic liquids....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号