首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
太原市近地面臭氧浓度变化规律及其与气象要素的关系   总被引:2,自引:0,他引:2  
臭氧(O3)是城市大气污染和气候变化促进的重要因子,对于城市大气污染与防治研究具有重要意义。本研究选取太原城区10个国控点O3日浓度变化,分析了其与相关气象因子(能见度、室外温度、室外湿度、风速和风向)的关系。研究结果表明,夏季O3浓度最高;春季O3浓度变化次之,冬季变化最小;城市新兴繁荣区和传统重工业区高浓度O3变化的时间跨度要明显高于过渡区域。城区O3和相关气象因子存在显著季节性变化特征。小波分析结果显示,城区O3时间序列相对较高能量的变化周期为主要以4 d的短周期为主(p0.05),与各气象因子存在8 d的显著的同步变化特征(p0.05),且在6—7月与室外温度和室外湿度还存在严格的线性同步变化特征,在11月则与可见度存在近似严格的线性同步变化特征。全年,西西北风对O3浓度影响频率达50%;而夏季受此影响频率高达60%,秋季西西北风和西北北风对O3浓度的影响频率相近(约40%)。研究结果将有助于为北方城市大气污染防治提供理论参考和实践指导。  相似文献   

4.
利用2003年7月至9月在泰山顶和济南市3个月的臭氧(O3)自动连续监测数据,对两地O3浓度的频率分布、日变化和日际变化等特征进行对照分析。实验结果表明,泰山顶O3小时平均浓度频率分布比较集中,济南市O3小时平均浓度频率分布比较分散。泰山顶各月O3小时平均浓度的平均值和日均值均高于济南市;泰山顶O3小时平均浓度的最大值低于济南市,而O3小时平均浓度的最小值要高于济南市。泰山顶O3小时平均浓度日变化规律与济南市O3小时平均浓度日变化规律有很大差别,泰山顶O3小时平均浓度日变化很平缓,最大值与最小值相差不大,济南市O3小时平均浓度一般在中午和午后浓度较高,早晨和夜晚较低。  相似文献   

5.
利用2014—2018年连云港地区的监测资料,分析了O3的月变化特征,得出O3与NO2、CO呈负相关关系,并给出了相对合理的解释。  相似文献   

6.
利用2007-2010年丽水市逐日大气污染物浓度数据和地面气象观测资料,对PM10、SO2、NO23种大气污染物浓度进行了时空分布特征研究,进而探讨了气象要素对大气污染的影响.结果表明:2007-2010年,丽水市主要的3种大气污染物的负荷为PM10> NO2 >SO2,影响大气环境质量的污染物以PM10为主;总体来说,NO2的月均浓度基本达到《环境空气质量标准》(GB3095-1996)-级标准,冬半年(9-12月、1-2月)SO2的月均浓度仅达到二级标准,而夏半年(3-8月)月均浓度基本达到一级标准,PM10的月均浓度都达到二级标准(0.10 mg/m3);在空间分布上,PM10、NO2的年均浓度都表现出东向西逐渐减少的特征,而SO2年均浓度主要体现为南向北递增的特征,3种大气污染物在空间上都表现为在东部缙云、青田等地的污染相对严重,而在西面的遂昌、龙泉等地的污染程度较轻;各种气象要素对大气污染的影响中,除了气压与3种大气污染物的浓度呈极显著正相关外,其他气象要素都表现为负相关,只是影响程度有所差异.气象要素对大气污染的影响不是单一作用的,而是通过多种气象要素相互配合、相互作用、综合反应来产生作用的.  相似文献   

7.
半城市化地区生活垃圾产生及其影响因素分析   总被引:3,自引:0,他引:3  
以典型半城市化地区--厦门市集美区为研究区域,调查了城市化梯度下的居住区特点和生活垃圾的产量;从半城市化地区的社会经济发展和环境意识实际状况出发,寻找微观尺度上影响生活垃圾产量的因素.半城市化地区生活垃圾产量较低但增长迅速,研究该地区生活垃圾产生及其影响因素的耦合关系,针对生活垃圾生产的源头,提出半城市化地区生活垃圾管...  相似文献   

8.
利用东部沿海城市天津大气边界层观测站(以下简称天津站)和西部兰州大学半干旱气候与环境观测站(SACOL)一年的臭氧和NOx体积浓度观测资料,对比分析了两观测站点近地层臭氧浓度的逐月变化、频率分布、日变化特征以及与NOx之间的相关关系.结果表明,两观测站点臭氧浓度月均值变化呈现出很好的一致性,均在4-7月出现高值,12月至次年2月出现低值,SACOL臭氧浓度月均值的最大值和最小值出现时间要比天津站推迟一个月.天津站臭氧体积浓度主要分布在10~50μL/m3,SACOL则集中在10~70 μL/m3,春、夏季两观测站点臭氧体积浓度低于10 μL/m3的频率均很小,秋、冬季两观测站点臭氧浓度频率分布特征类似.两观测站点臭氧浓度日变化在4个季节均呈现典型的单峰型分布,SACOL臭氧浓度日最大值出现时刻要比天津站晚2h.两观测站点臭氧浓度与NOx、NO2、NO的浓度之间均呈显著的负相关关系.天津站与臭氧浓度的相关性最强的为NO,而SACOL则是NOx.  相似文献   

9.
臭氧氧化对ASBR/SBR工艺SBR段污泥和上清液的性质影响   总被引:1,自引:0,他引:1  
研究了臭氧氧化对ASBR/SBR工艺中SBR段污泥性质和上清液的影响.结果表明,当臭氧投加量为0~0.349 g O3/g MLSS时,随着施加臭氧浓度的不断增加,MLSS、MLVSS和污泥的生物活性明显降低,但污泥的沉淀性却增强了.污泥上清液中,TN、NH4+-N、NO3--N、PO43--P和多糖浓度均随着臭氧投加...  相似文献   

10.
将厌氧序批式间歇反应器(ASBR)和序批式间歇反应器(SBR)串联组成污泥减量新工艺,着重探讨了对SBR段进行原位臭氧投加时,臭氧氧化作用对系统硝化和反硝化能力的影响,并以不投加作为对照。结果表明,将臭氧原位投加到ASBR—SBR组合工艺的SBR段,臭氧投加量为0.027g(以每克MLSS计),每隔3个周期再次投加、连续运行40d,试验组SBR段臭氧投加当期出水COD去除率为86%,比对照组下降了9百分点,但臭氧氧化细胞内大量有机物进入混合液中,为反硝化作用提供了外加碳源,对污泥反硝化能力的提高起到了一定的促进作用;试验组部分硝化细菌由于臭氧的强氧化作用而失去活性,但是随着剩余污泥量的减少,系统的污泥龄延长,有利于硝化细菌的生长,使得系统的硝化能力基本未受影响;试验组臭氧投加当期SBR段出水NO2--N平均浓度比对照组的高18.9%,但经过3个周期的运行后,其SBR段出水NO2--N平均质量浓度降低至7.57mg/L,基本与对照组持平;试验组臭氧投加当期SBR段出水NO3--N的平均浓度高于对照组,但经过3个周期的运行后,试验组出水NO3--N平均浓度低于对照组;试验组臭氧投加当期SBR段出水TN和对照组的出水TN平均去除率分别为65%和75%,但试验组再经过3个周期的运行后,出水TN平均去除率可以达到72%。可见,原位投加臭氧并未对SBR段的硝化和反硝化能力产生明显的影响。  相似文献   

11.
针对日益严重的臭氧污染问题,利用绍兴市3个国控监测站点2016—2018年的监测数据,对绍兴市臭氧污染的时空分布特征进行研究,并综合考量温度、湿度、风向、风力等气象因素的影响。结果表明,绍兴市2017年臭氧最高时均质量浓度为355μg/m~3,显著高于2016年(267μg/m~3)。臭氧日浓度曲线呈单峰型特征,峰值出现于14:00左右,谷值出现于6:00左右。2016年夏季臭氧浓度最高,而2017年与2018年春季臭氧浓度最高。臭氧高值首次出现日期提前与温度有关。气象因素上,温度≥30℃,40%≤相对湿度70%,风向为东北风时,绍兴市更易出现臭氧高值。2018年绍兴市西南部臭氧浓度峰值显著低于其他区域,可能是NO_x等污染物减排后传输作用变化所致。  相似文献   

12.
广州南沙区O3浓度变化及其与气象因子的关系   总被引:1,自引:0,他引:1  
利用广州南沙区气象探测基地2010年O3浓度和常规气象观测资料,分析了O3浓度变化特征及其气象因子的关系。结果表明,广州南沙区2010年O3浓度最高时均值的最大值出现在8月,超标时数最多的是9月;O3浓度日变化呈单峰型分布,O3浓度日变化最大的季节是秋季,其次为夏季、春季、冬季;O3浓度呈现秋季>春季>夏季>冬季的变化特征。气温、相对湿度、日照时数和云量与O3浓度相关系数大,是影响南沙O3浓度的主要气象因子。秋季O3浓度高,O3主要以局地光化学反应生成为主;春季、夏季和冬季O3主要以外来源的输送为主。气团后向轨迹分析表明南沙区秋季气团主要来自污染的大陆地区,春季、夏季和冬季气团主要是来自东南沿海附近或较为清洁的南海。  相似文献   

13.
Although terrestrial vegetation has been exposed to UV-B radiation and ozone over the course of evolutionary history, it is essential to view the effects on vegetation of changing levels of these factors in the context of other features of climate change, such as increasing CO(2) levels and changes in temperature and precipitation patterns. Much of our understanding of the impacts of increased UV-B and ozone levels has come from studies of the effects of each individual factor. While such information may be relevant to a wider understanding of the roles that these factors may play in climate change, experience has shown that the interactions of environmental stresses on vegetation are rarely predictable. A further limitation on the applicability of such information results from the methodologies used for exposing plants to either factor. Much of our information comes from growth chamber, greenhouse or field studies using experimental protocols that made little or no provision for the stochastic nature of the changes in UV-B and ozone levels at the earth's surface, and hence excluded the roles of repair mechanisms. As a result, our knowledge of dose-response relationships under true field conditions is both limited and fragmentary, given the wide range of sensitivities among species and cultivars. Adverse effects of increased levels of either factor on vegetation are qualitatively well established, but the quantitative relationships are far from clear. In both cases, sensitivity varies with stage of plant development. At the population and community levels, differential responses of species to either factor has been shown to result in changes in competitiveness and community structure. At the mechanistic level, ozone generally inhibits photosynthetic gas exchange under both controlled and field conditions, and although UV-B is also inhibitory in some species under controlled conditions, others appear to be indifferent, particularly in the field. Both factors affect metabolism; a common response is increased secondary metabolism leading to the accumulation of phenolic compounds that, in the case of UV-B, offer the leaf cell some protection from radiation. Virtually no information is available about the effects of simultaneous or sequential exposures. Since both increased surface UV-B and ozone exposures have spatial and temporal components, it is important to evaluate the different scenarios that may occur, bearing in mind that elevated daytime ozone levels will attenuate the UV-B reaching the surface to some extent. The experimentation needed to acquire unequivocal effects data that are relevant to field situations must therefore be carried out using technologies and protocols that focus on quantification of the interactions of UV-B and ozone themselves and their interactions with other environmental factors.  相似文献   

14.
The impact of ozone on assimilate partitioning in plants: a review   总被引:50,自引:0,他引:50  
Numerous studies have shown that ozone (O(3)) reduces plant growth and changes assimilate partitioning. The pattern of such changes varies with species, but trends suggest a comprehensive model. O(3) generally reduces the amount of dry matter in the whole plant. In plants which have not flowered or set fruit, and at low O(3) levels, the remaining available assimilate is generally diverted to leaves and stems at the expense of roots and crowns. As the plant matures, flowers and develops seeds, these sinks receive a relatively high proportion of the available assimilate. O(3) may reduce the number of flowers or seeds, but the remaining seeds often have a total dry matter accumulation comparable to that in non-stressed plants. At higher O(3) levels, assimilate accumulation is greatly depressed, and partitioning changes are not as obvious. However, it is significant that the storage organs of plants-those organs which supply energy for new growth in perennial plants such as trees-are the organs most affected by O(3)-induced partitioning changes when O(3) concentrations are in the range commonly observed in polluted ambient air.  相似文献   

15.
Hourly measurements of ozone concentration in the urban atmosphere of Istanbul were carried out from February 1998 to July 1999. An assessment of the annual variations and relationships of ozone concentrations and meteorological variables was made. Annual variations were first examined without considering meteorological variables, and meteorological influences on ozone seasonal values were then examined. Furthermore, a typical ozone threshold period was analysed by considering meteorological variables for a case study. Meteorological conditions favourable for high ozone concentrations appeared when Istanbul and its surrounding region were dominated by an anticyclonic pressure system. During conducive ozone days, southerly and southwesterly winds with low speeds (daytime mean value <11m1sSUP align=right>-1) influence Istanbul.  相似文献   

16.
This work analyzes the variations in daily maximum 1-hr ozone (O3) concentrations and the long-term trends in annual means of hourly ambient concentrations of O3, nitrogen oxides (nitrous oxide + nitrogen dioxide), and nonmethane hydrocarbons in the three administrative regions of Kao-Ping airshed in southern Taiwan over a recent 8-yr period. The annual or monthly means of all maxima, most 95th percentiles, and some 90th percentiles of the daily maximum 1-hr O3 concentrations exceed the daily limit of 120 parts per billion by volume in all three regions, namely, Kao-hsiung City, Kso-hsiung County, and P'ing-tung County. The monthly means of daily maximum 1-hr O3 concentrations exhibit distinct seasonal variations, with a bimodal form with the maxima in autumn and late winter to the middle of spring and a minimum in summer. The long-term variations in the annual means of hourly O3 concentrations in the three regions exhibit increasing trends. These increases in O3 are associated with the decline in ambient concentrations of nitrogen oxides and nonmethane hydrocarbons. High O3 episodes occur most often in autumn and most rarely in summer. The seasonal mean mixing heights in descending order follow the order of spring, summer, autumn, and winter. Meteorological parameters in autumn and winter indicate that the ground-level O3 tends to accumulate and trigger a high O3 episode on a warm day with sufficient sunlight and low wind in a high-pressure system, consistent with the low mixing heights in these two seasons.  相似文献   

17.
Spartina alterniflora plants were collected from salt marshes within New Jersey, South Carolina, and Georgia USA and shipped to The Pennsylvania State University. New plants were grown from rhizomes in six open-top field chambers. Three chambers received charcoal-filtered air, and three received charcoal-filtered air plus 80 ppb ozone, 8 h/day for 65 days. Flower, leaf, and shoot number per plant were recorded weekly. Photosynthetic rates were measured in week 5, and foliar injury was assessed during week 9. Final dry weight of roots, shoots, and rhizomes were determined. While ozone-treated plants from all states expressed symptoms of ozone injury, plants from South Carolina exhibited no effect of ozone on any other measured variable. Plants from the Georgia site showed ozone-induced reductions in all measured variables except leaf dry weight. Ozone-treated plants from New Jersey showed reductions in photosynthetic rate, leaf and shoot number, and root dry weights. Only plants from New Jersey produced flowers, with ozone treatment causing delay in flowering and reduction in the number of flower spikes produced.  相似文献   

18.
The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.  相似文献   

19.
A variety of statistical methods for meteorological adjustment of ozone have been proposed in the literature over the last decade for purposes of forecasting, estimating ozone time trends, or investigating underlying mechanisms from an empirical perspective. The methods can be broadly classified into regression, extreme value, and space–time methods. We present a critical review of these methods, beginning with a summary of what meteorological and ozone monitoring data have been considered and how they have been used for statistical analysis. We give particular attention to the question of trend estimation, and compare selected methods in an application to ozone time series from the Chicago area. We conclude that a number of approaches make useful contributions to the field, but that no one method is most appropriate for all purposes and all meteorological scenarios. Methodological issues such as the need for regional-scale analysis, the nonlinear dependence of ozone on meteorology, and extreme value analysis for trends are addressed. A comprehensive and reliable methodology for space–time extreme value analysis is attractive but lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号