首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Chen CY  Kao CM  Chen SC 《Chemosphere》2008,71(1):133-139
Klebsiella oxytoca, isolated from cyanide-containing industrial wastewater, has been shown to be able to biodegrade cyanide to non-toxic end products. The technology of immobilized cells can be applied in biological treatment to enhance the efficiency and effectiveness of biodegradation. In this study, potassium cyanide was used as the target compound and both alginate and cellulose triacetate techniques were applied for the preparation of immobilized cells. Results from this study show that KCN can be utilized as the sole nitrogen source by K. oxytoca. The free suspension systems reveal that the cell viability was highly affected by initial KCN concentration and pH. Results show that immobilized cell systems could tolerate a higher level of KCN concentration and wider ranges of pH. In the batch experiments, the maximum KCN removal efficiencies using alginate and cellulose triacetate immobilized beads were 0.108 and 0.101mM h(-1) at pH 7, respectively. Results also indicate that immobilized system can support a higher biomass concentration. Complete KCN degradation was observed after the operation of four consecutive degradation experiments with the same batch of immobilized cells. This suggests that the activity of immobilized cells can be maintained and KCN can be used as the nitrogen source throughout KCN degradation experiments. The maximum KCN removal rates using alginate and cellulose triacetate immobilized beads in continuous-column system were 0.224 and 0.192mMh(-1) with initial KCN concentration of 3mM, respectively. Results indicate that the immobilized cells of K. oxytoca would be applicable to the treatment of cyanide-containing wastewaters.  相似文献   

2.
Inhibition of nitrification by four typical pollutants (acrylonitrile, acrylic acid, acetonitrile and cyanide) in acrylonitrile wastewater was investigated. The inhibitory effect of cyanide on nitrification was strongest, with a 50% inhibitory concentration of 0.218 mg·gVSS-1 being observed in a municipal activated sludge system. However, the performance of nitrification was recovered when cyanide was completely degraded. The nitrification, which had been inhibited by 4.17 mg·gVSS-1 of free cyanide for 24 h, was recovered to greater than 95% of that without cyanide after 10 days of recovery. To overcome cyanide inhibition, cyanide-degrading bacteria were cultivated in a batch reactor by increasing the influent cyanide concentration in a stepwise manner, which resulted in an increase in the average cyanide degradation rate from 0.14 to 1.01 mg CN-·gVSS-1·h-1 over 20 days. The cultured cyanide-degrading bacteria were shaped like short rods, and the dominant cyanide-degrading bacteria strain was identified as Pseudomonas fluorescens NCIMB by PCR.  相似文献   

3.
Gan HM  Shahir S  Ibrahim Z  Yahya A 《Chemosphere》2011,82(4):507-513
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μmax, Ks and Ki were determined to be 0.13 h−1, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.  相似文献   

4.
A microbiological examination of the soil from a cyanide wastewater storage basin was carried out. The storage basin contained water from the cyanidation process of gold extraction, and it was composed principally of simple cyanide, metal complexed cyanide, mainly cuprocyanide, ferro-ferricyanides and thiocyanate. Pseudomonas species were the principal bacteria identified in the soil. Using the storage basin soil as a seed sludge, its potential for the biodegradation of all the cyanide complexes in the mining wastewater was studied in the laboratory, using batch, fed-batch and continuous processes. The ammonia and sulphate produced were quantified. The presence of intermediate products was suspected. In the continuous process, total degradation of all cyanide was observed at a dilution rate of 0.066 day(-1).  相似文献   

5.
A new species of Rhodococcus, designated strain MZ-3, which could degrade acetochlor efficiently were isolated and identified. The isolate could degrade and utilize acetochlor as the sole source of carbon, nitrogen, and energy for growth. The optimal conditions for the degradation and growth of MZ-3 were pH 7.0 and 30°C. Under these conditions, this strain could completely degrade 200 mg/L of acetochlor within 12 h of incubation. During the biodegradation process, the enantioselectivity of the strain was investigated using a chiral high-performance liquid chromatography (HPLC) system. However, no obvious enantioselectivities were found. 2-chloro-N-(2-methyl-6-ethylphenyl) acetamide (CMEPA) was detected as the intermediate using liquid chromatography-mass spectrometry (LC-MS) analyses. Our results suggest that strain MZ-3 might be a promising microorganism for the bioremediation of acetochlor-contaminated environments because of its acetochlor-degrading performance.  相似文献   

6.
High-rate biodegradation of 3- and 4-nitroaniline   总被引:5,自引:0,他引:5  
Saupe A 《Chemosphere》1999,39(13):2325-2346
A municipal wastewater biosludge was acclimated to the degradation of 4-nitroaniline (4-NA). The acclimation was achieved by using this compound as the sole source of nitrogen during the degradation of succinate as the sole source of carbon and energy. The acclimated bacteria were able to eliminate and mineralize 4-NA as the sole source of carbon and energy. However, in batch tests, the degradation process was somewhat instable and only occurred at comparatively low rates. A continuously operated miniaturized fixed-bed bioreactor was used in order to increase the degradation rates. It was inoculated with the acclimated bacteria and fed with 4-NA as the sole substrate. The system enabled high bioconversion efficiency, due to the development of a high biomass concentration of up to 5.45 g SS L-1. At input concentrations of 4-NA up to 4.5 mM and a hydraulic retention time of 3.5 hours a high degradation rate of 1.1 mmol 4-NA L-1 h-1 and 90 ... 95% DOC removal were achieved. Partial nitrification, also occurred. After gradual adaptation, the bacteria also degraded 3-NA and 4-NA simultaneously in this system. Additional batch tests showed, that 3-NA can serve as the sole source of carbon, nitrogen and energy.  相似文献   

7.
从南京禄口水产养殖基地淡水鱼塘取淤泥作为分离菌株的土源,采用选择性富集培养法,从中分离到能以硫酸铵为氮源的菌株7株,对7个菌株进行氨氮降解实验,它们氨氮转化率分别为14.8%、19.7%、53.4%、94.2%、29.1%、63.5%和41.7%,其中AN-4菌株的转化率最高且生长良好。通过AN-4菌株16S rRNA基因序列分析以及生理生化方法,鉴定此菌株为克雷伯氏菌属(Klebsiellasp.)。对菌株AN-4转化氨氮的特性及温度、pH值、氨氮初始浓度和菌株接种量对其氨氮转化率的影响研究,结果表明,菌株AN-4降解氨氮的最适条件为:温度为30℃和pH值为8.0;当氨氮初始浓度为30mg/L时,AN-4菌株在24 h内的氨氮降解率可达85%以上,且能耐受高达200 mg/L的氨氮浓度;AN-4活化菌液浓度为108cfu/mL,当接种量为3×106cfu/mL时,AN-4菌株在24 h内的氨氮降解率为87.75%。综合上述结果,符合淡水养殖水环境条件,说明AN-4菌株适合在水产养殖中应用,为将菌株AN-4应用于水产养殖环境修复提供了理论依据。  相似文献   

8.
硝基苯类化合物生物降解菌的筛选及性能研究,是制药、染料等行业废水达标的重要基础。以浓度梯度升高法筛选到一株硝基苯厌氧降解菌Klebsiella oxytoca NBA-1。考察了该菌对氧气的需求,以及在厌氧条件下,温度、pH值、外加葡萄糖及硝基苯初始浓度等环境因子对菌株降解硝基苯能力的影响,并进一步讨论菌株对氯取代硝基苯类化合物的降解情况。结果表明,该菌在厌氧条件下生长比好氧条件下慢,但降解速度更快;厌氧降解硝基苯的最佳pH值和温度和分别为8.3和30~35℃;加入0.3%~0.5%的葡萄糖可促进降解,且对300mg/L以下的硝基苯均有降解能力;该菌能将4-氯硝基苯转化为4-氯苯胺,并进一步脱氯为苯胺。研究结果可为硝基苯及含氯硝基苯的处理工艺选择提供相关的参考依据。  相似文献   

9.
高效、经济的预处理技术对提高稻秆的生物降解效率,实现稻秆资源的工业化利用具有重要意义。为确定液氨对稻秆生物降解性的影响,以复合菌系WSC-接种液氨预处理的稻秆,研究其生物降解性能。结果表明,用液氨预处理后的稻秆作为碳源,由于营养结构的改变,复合菌系WSC-6需要经过3d的适应期进入对数增长期,氮源利用率和微生物浓度均显著高于未处理的对照组。复合菌系WSC-6对其生物降解性得到明显提高,7d后的稻秆失重率达到62.7%,纤维素、半纤维素和木质素的降解率分别达到57.5%、85.6%和36.3%。液氨预处理对发酵系统的pH值影响不大,复合菌系WSC-对稻秆降解的pH值仍维持在6.5~8.6之间,有利于进行丁酸型发酵,这对后续利用乙酸高效生产沼气具有重要意义。  相似文献   

10.
主要针对筛选的高效降解微囊藻毒素(microcystins,MCs)的食酸戴尔福特菌USTB-04(Delftia acidovorans,DA菌)的培养方法进行了研究.结果表明,以葡萄糖、甘油和乙醇作为惟一碳源时,与氯化铵和尿素相比,酵母粉是支持DA菌生长的较好氮源.在以酵母粉作为惟一氮源时,与甘油和乙醇相比,葡萄糖是提高DA菌生长速度的较好碳源.进一步研究显示,以葡萄糖和酵母粉作为碳源和氮源时,可以支持DA菌的快速稳定生长,但在以甘油和酵母粉作为碳源和氮源时.培养出的DA菌降解MCs的比活性最高.此研究在培养高细胞浓度DA菌作为生物催化剂用于饮用水源中的MCs去除方面具有重要意义.  相似文献   

11.
Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80   总被引:2,自引:0,他引:2  
By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30-35°C, 6.0-7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L?1, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L?1, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L?1, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L?1 and 50 mg L?1. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.  相似文献   

12.
硝态氮为惟一氮源时异养微生物增长特性   总被引:2,自引:0,他引:2  
采用SBR研究了缺氧条件下硝态氮为惟一氮源时异养微生物的增长特性。结果表明,异养微生物能利用硝态氮作为氮源进行增殖。当进水COD浓度为1 400 mg/L,硝态氮浓度为280 mg/L时,COD和硝态氮的去除率分别达到97%和99%;污泥中微生物的含氮量为8.8%,低于常规利用氨氮作为氮源的微生物;在实验条件下活性污泥的产率系数为0.30 g VSS/g COD。反硝化菌可利用硝态氮作为氮源进行细胞合成对含硝氮的废水处理具有重要意义。一方面由于无需投加氨氮降低了废水处理成本,另一方面由于污泥产率低,降低了污泥处理成本。  相似文献   

13.
To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.  相似文献   

14.
从吉林石化污水处理厂的活性污泥中驯化、筛选获得一株降解效率高且生长速率快高效耐冷菌,命名为WS-5。该菌能以喹啉作为惟一的碳源、氮源及能源。结合菌体的形态观察、生理生化特性实验及16SrDNA序列同源性对比分析,鉴定菌株WS-5为恶臭假单胞菌(Pseudomonasputida)。不同降解条件下的实验结果表明,菌株WS-5的最佳降解条件是投菌量为15%,pH值范围在8~10,摇床转速为100r/min。最佳降解环境下对200mg/L的喹啉在132h降解率达到了85.3%。菌株WS-5对初始喹啉浓度为50、100、200和300mg/L的初始喹啉浓度分别在36、72、192和262h内完全降解。这将为今后在低温条件下处理含喹啉废水提供技术指导。  相似文献   

15.
低温喹啉降解菌的筛选及降解性能   总被引:2,自引:0,他引:2  
从吉林石化污水处理厂的活性污泥中驯化、筛选获得一株降解效率高且生长速率快高效耐冷菌,命名为WS-5.该菌能以喹啉作为惟一的碳源、氮源及能源.结合菌体的形态观察、生理生化特性实验及16S rDNA序列同源性对比分析,鉴定菌株WS-5为恶臭假单胞菌(Pseudomonas putida).不同降解条件下的实验结果表明,菌株WS-5的最佳降解条件是投菌量为15%,pH值范围在8~10,摇床转速为100 r/min.最佳降解环境下对200 mg/L的喹啉在132 h降解率达到了85.3%.菌株WS-5对初始喹啉浓度为50、100、200和300 mg/L的初始喹啉浓度分别在36、72、192和262 h内完全降解.这将为今后在低温条件下处理含喹啉废水提供技术指导.  相似文献   

16.
《Chemosphere》1987,16(5):1071-1086
Guanidinium ion was degraded by microorganisms in a variety of surface water samples. Degradation of the cation was characterized by long and variable periods prior to enhanced microbial activity and was considerably slower than the degradation of the amino acid arginine. A carbon source could potentiate the degradation of guanidinium ion, in which case its carbon was mineralized and its nitrogen could be used for growth; but at nutrient levels in surface water, only slight mineralization of the cation's carbon was demonstrated and was considerably slower than that of urea carbon. Degradation of guanidinium ion by microorganisms capable of growing on it as a sole carbon source was estimated to be slow relative to two xenobiotic compounds. The development of such populations in surface water samples was dependent on the concentration of guanidinium ion.  相似文献   

17.
In this study soils from sugarcane-cultivated fields were screened for bacterial species capable of atrazine (6-chloro-N2-ethyl-N?-isopropyl-1,3,5-triazine-2,4-diamine) degradation due to long exposure of the soils to this herbicide. To enrich for atrazine degraders, Minimal Salt Medium containing atrazine as the sole N source and glucose as the C source was inoculated with soils impacted with this herbicide and incubated. Bacterial growth was monitored by measuring optical density. The degradation of atrazine was followed by measuring residual atrazine in liquid cultures over a given time period by high performance liquid chromatography. Bacterial strains isolated from the enrichment cultures were characterized by biochemical tests and identified by 16S rRNA gene sequencing. Two bacterial strains coded ISL 8 and ISL 15 isolated from two different fields were shown to have 94 and 96% 16S rRNA gene sequence similarity to Burkholderia cepacia respectively. Another bacterial sp., ISL 14 was closely related to Enterobacter cloacae with a 96% 16S rRNA gene sequence similarity. There was not much difference between the extents of atrazine degradation by the enrichment cultures with communities (79-82% applied amount) from which pure strains were isolated and the pure strains themselves in liquid cultures that showed a degradation of 53-83% of applied amount. The study showed existence of bacterial strains in different sugarcane-cultivated fields which can use atrazine as a nitrogen source. The bacterial strains isolated can be used to enhance the degradation of atrazine in contaminated soils where atrazine is still considered to be recalcitrant.  相似文献   

18.
In this study soils from sugarcane-cultivated fields were screened for bacterial species capable of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) degradation due to long exposure of the soils to this herbicide. To enrich for atrazine degraders, Minimal Salt Medium containing atrazine as the sole N source and glucose as the C source was inoculated with soils impacted with this herbicide and incubated. Bacterial growth was monitored by measuring optical density. The degradation of atrazine was followed by measuring residual atrazine in liquid cultures over a given time period by high performance liquid chromatography. Bacterial strains isolated from the enrichment cultures were characterized by biochemical tests and identified by 16S rRNA gene sequencing. Two bacterial strains coded ISL 8 and ISL 15 isolated from two different fields were shown to have 94 and 96% 16S rRNA gene sequence similarity to Burkholderia cepacia respectively. Another bacterial sp., ISL 14 was closely related to Enterobacter cloacae with a 96% 16S rRNA gene sequence similarity. There was not much difference between the extents of atrazine degradation by the enrichment cultures with communities (79–82% applied amount) from which pure strains were isolated and the pure strains themselves in liquid cultures that showed a degradation of 53–83% of applied amount. The study showed existence of bacterial strains in different sugarcane-cultivated fields which can use atrazine as a nitrogen source. The bacterial strains isolated can be used to enhance the degradation of atrazine in contaminated soils where atrazine is still considered to be recalcitrant.  相似文献   

19.
微囊藻毒素-LR降解菌的筛选及降解特性研究   总被引:1,自引:0,他引:1  
从上海市淀山湖表层水体中筛选分离出了1株降解微囊藻毒素-LR(MC-LR)的细菌并研究了其降解特性。根据细胞形态结构、生理生化特征及其16S rDNA基因序列分析,鉴定分离菌株DHU-28(GenBank序列登录号为HM047512)属嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)。微囊藻毒素降解实验结果表明,该菌株能在以MC-LR为唯一碳源、氮源的无机盐培养基中生长,6 d内可将初始质量浓度为15 mg/L的MC-LR降解为8.12 mg/L,降解效率达到45.9%。菌株DHU-28的最适生长温度是30℃,最适生长pH为7.0。酵母粉、蛋白胨、葡萄糖等营养物质可以明显促进菌株对MC-LR的降解效率,尤其是加入50 mg/L酵母粉后,6 d降解率达到63.2%。  相似文献   

20.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号