首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed with a particle tracking velocimetry system to investigate the behaviour of inclined negatively buoyant jets with source angles of 15°, 30°, 45°, 60°, 65°, 70°, and 75° in stationary ambient conditions. Velocities were measured in a plane aligned with the central axis of the flow and the experiments were designed such that the flow did not interact with boundaries in the region were the flow behaviour was measured. The results of this study complement previous research, which has largely focused on the mean geometric characteristics and the mean dilution of the discharged fluid. Geometric characteristics, spreading rates, and time-averaged (mean) centreline velocity results are compared with relevant experimental results from previous studies and integral model predictions. Axial and transverse mean velocity profiles at maximum height and the return point provide additional insights into the detrainment of discharged fluid due to the unstable density gradient on the inner side of the flow.  相似文献   

2.
A comprehensive laboratory study of negatively buoyant discharges is presented. Unlike previous studies, here the focus is on generating data sets where influences of the bottom boundary have been eliminated. There are significant discrepancies in the published dilution data for these flows and a contributing factor is the large variation in the bottom boundary condition. A Laser-induced Fluorescence system is employed to gather flow spread, peak concentration (minimum dilution) and trajectory data for a wide range of densimetric Froude numbers and initial discharge angles. Data from these experiments are compared with previously published data, along with predictions from integral models and a revised form of the previously published semi-analytical solutions. The new data sets are not distorted by mixing processes associated with the bottom boundary and therefore provide the basis for more meaningful assessments of the predictive capabilities of existing models, given that the influences of the bottom boundary on contaminant mixing are not incorporated into these models. In general the models assessed are able to predict key geometric quantities with reasonable accuracy, but their minimum dilution predictions are conservative. Importantly dilution at the return point shows a strong dependence on the initial discharge angle and this could have important implications for the design of discharge systems.  相似文献   

3.
A series of Large Eddy Simulations (LES) are performed to investigate the penetration of starting buoyant jets. The LES code is first validated by comparing simulation results with existing experimental data for both steady and starting pure jets and lazy plumes. The centerline decay and the growth rate of the velocity and concentration fields for steady jets and plumes, as well as the simulated transient penetration rate of a starting pure jet and a starting lazy plume, are found to compare well with the experiments. After validation, the LES code is used to study the penetration of starting buoyant jets with three different Reynolds numbers from 2000 to 3000, and with a wide range of buoyancy fluxes from pure jets to lazy plumes. The penetration rate is found to increase with an increasing buoyancy flux. It is also observed that, in the initial Period of Flow Development, the two penetrative mechanisms driven by the initial buoyancy and momentum fluxes are uncoupled; therefore the total penetration rate can be resolved as the linear addition of these two effects. A fitting equation is proposed to predict the penetration rate by combining the two independent mechanisms.  相似文献   

4.
Environmental Fluid Mechanics - The drift velocity, defined as the velocity of individual phase relative to the water–sediment mixture, is a key variable in two-phase mixture model. In this...  相似文献   

5.
Sediment-laden turbulent flows are commonly encountered in natural and engineered environments. It is well known that turbulence generates fluctuations to the particle motion, resulting in modulation of the particle settling velocity. A novel stochastic particle tracking model is developed to predict the particle settling out and deposition from a sediment-laden jet. Particle velocity fluctuations in the jet flow are modelled from a Lagrangian velocity autocorrelation function that incorporates the physical mechanism leading to a reduction of settling velocity. The model is first applied to study the settling velocity modulation in a homogeneous turbulence field. Consistent with basic experiments using grid-generated turbulence and computational fluid dynamics (CFD) calculations, the model predicts that the apparent settling velocity can be reduced by as much as 30 % of the stillwater settling velocity. Using analytical solution for the jet mean flow and semi-empirical RMS turbulent velocity fluctuation and dissipation rate profiles derived from CFD predictions, model predictions of the sediment deposition and cross-sectional concentration profiles of horizontal sediment-laden jets are in excellent agreement with data. Unlike CFD calculations of sediment fall out and deposition from a jet flow, the present method does not require any a priori adjustment of particle settling velocity.  相似文献   

6.
The application of computational fluid dynamics (CFD), particularly Large Eddy Simulation, for the modelling of buoyant turbulent plumes, has been demonstrated to be very accurate, but computationally expensive. Here a more basic, and therefore more generally practicable, approach is presented. Commercial CFD software is used to model such plumes using Reynolds-Averaged Navier-Stokes (RANS) turbulence models. A careful comparison is made between the numerical predictions and well-established results regarding the bulk properties of plumes. During this process, we are able to observe the well-known approximate Gaussian nature of the plume and achieve quantitative agreement with empirical plume spread coefficients. The use of numerical modelling allows for the investigation of the flow field and turbulence in those regions of the plume of most interest—the plume edge and near source regions. A comprehensive sensitivity study is conducted to identify the limits of applicability of this modelling approach. It is shown that the standard modelling approach of Morton, Taylor and Turner, which introduced the well-known entrainment assumption, pertains in a region well above the source region. At the plume edge, the levels of turbulence are contrasted with the value of the entrainment parameter. Finally, the effects of forcing the plumes with additional momentum at the source are considered, including the case of a pure jet. We show how these forced plumes eventually lose their momentum excess and tend to the behaviour of a pure, buoyant plume.  相似文献   

7.
The euphausiid Euphausia crystallorophias Holt and Tattersall, 1906 is considered to be a neritic species. It has been found in greatest abundance along the Antarctic continental margins, often in association with regions of pack ice. Although E. crystallorophias has been observed at some islands to the west of the Antarctic Peninsula, the species has not previously been reported from islands of the maritime- or sub-Antarctic further north. During an oceanographic transect in November 1997 from South Georgia to the South Sandwich Islands, acoustic observations revealed a dense, discrete pelagic target at 50 m. The target was fished and was found to be an aggregation of small E. crystallorophias. The fishing location (54.48°S; 30.61°W) was >1500 km from the Antarctic continent, and >250 km from the nearest land, in water of several thousands of metres depth – clearly a non-neritic environment. Examination of hydrographic data revealed that the E. crystallorophias swarm had been located within a fast-flowing band of water that had characteristics of water found near the Antarctic Peninsula. This band was ≃150 km wide, and had a speed ranging from 9 to 22 km d−1 in a north-easterly direction. The possible origins of this E. crystallorophias swarm are explored in the light of the eddy-dominated current patterns prevalent in the Weddell–Scotia Confluence region, and with reference to published growth-rate estimates for the species. We discuss the potential for long-distance dispersal of E. crystallorophias and other neritic species in fast current jets, and examine how such oceanographic features could facilitate long-distance dispersal, colonization, and gene flow. Received: 23 November 1998 / Accepted: 25 March 1999  相似文献   

8.
Meandering flows in rectangular shallow reservoirs were experimentally investigated. The characteristic frequency, the longitudinal wave length and the mean lateral extension of the meandering jet were extracted from the first paired modes, obtained by a proper orthogonal decomposition of the surface velocity field measured by large scale PIV. The depth-normalised characteristic lengths and the Strouhal number were then compared to the main dimensionless numbers characterizing the experiments: Froude number, friction number and reservoir shape factor. The normalised wave length and mean lateral extension of the meandering jet are neither correlated with the Froude number nor with the reservoir shape factor; but a clear relationship is found with the friction number. Similarly, the Strouhal number is found proportional to a negative power of the friction number. In contrast, the Froude number and the reservoir shape factor enable to predict the occurrence of a meandering flow pattern: meandering jets occur for Froude number greater than 0.21 and for a shape factor smaller than 6.2.  相似文献   

9.
Environmental Fluid Mechanics - In the present study, we performed an extensive laboratory investigation to quantify the turbulence characteristics of 45° inclined dense jets using Particle...  相似文献   

10.
11.
This study focuses on the inertial oscillation aspect of the nocturnal low-level jet (NLLJ). In the context of the Ekman model solutions, conceptual NLLJ inertial oscillation analytical frameworks proposed by Blackadar in 1957 and Shapiro and Fedorovich and van de Wiel et al. in 2010 are compared. Considering a NLLJ produced via direct numerical simulation over flat terrain with no baroclinic influence as a reference case, the deficiencies of each framework in representing a realistic NLLJ are assessed. The Blackadar theory results in unrealistic wind profiles near the surface. While extensions of Blackadar’s framework by Shapiro and Fedorovich and van de Wiel et al. produce more realistic NLLJs, the simpler approach taken by van de Wiel et al. does not describe the NLLJ wind hodograph at later times sufficiently in qualitative terms.  相似文献   

12.
60° inclined dense jets had been recommended for brine discharges from desalination plants to achieve a maximum mixing efficiency. However, the terminal rise associated with 60° is relatively high and thus the angle may be too large for disposal in shallow coastal wasters. In this study, we investigate the mixing behavior of dense jets discharging at smaller angles of 30° and 45° in a stationary ambient. Combined Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) were used as the measurement approaches that captured the velocity and concentration fields, respectively. Based on the experimental results, the characteristic geometrical features of the inclined dense jets, including the location of the centerline peak and the return point where the dense jet returns to the source level, etc., are quantified. The mixing and diluting behaviors are also revealed through the analysis of the axial and cross-sectional velocity and concentration profiles. In addition to the free inclined discharges, the present study also examines the effect of the proximity to the bed. Through the comparison of the results between two experimental series with distinct z 0/D but overlapping z 0/L M , the latter is identified as the deciding factor for the boundary influence.  相似文献   

13.
An integral model that combines all advantages of Superposition Method (SM), Entrainment Restriction Approach (ERA) and Second Order Approach (SOA) is proposed to predict the mean axial velocity and concentration fields of a group of N interacting vertical round turbulent buoyant jets. SM is successful in predicting the fields of mean axial velocity and mean concentration for a group of N interacting jets or plumes and ERA is advantageous in predicting the above fields for either two or large number (N → ∞) of interacting buoyant jets in the whole range of buoyancy. SOA takes into consideration in a dynamic way the turbulent contribution to the momentum and buoyancy fluxes and provides better accuracy than the usual procedures. A novelty of the proposed model is the production and utilisation of advanced profile distributions, convenient for the mean axial velocities and concentrations in a cross-section of the entire group of buoyant jets. These profiles are developed on the basis of flux conservation of momentum, buoyancy and kinetic energy for the mean motion. They enhance dynamic adaptation of the individual buoyant jet axes to the group centreline. Due to these profile distributions, the present model owns generality of application and better accuracy of predictions compared to usual integral models using simple Gaussian or top-hat profiles; thus it conferred the name Advanced Integral Model (AIM). AIM is herein applied to predict the mean flow properties of two different arrangement types of any number of buoyant jets: (a) linear diffusers and (b) rosette-type risers. Present results are compared to available experimental data and traditional solutions based on Gaussian profiles. Findings may be useful for design purposes and environmental impact assessment.  相似文献   

14.
Environmental Fluid Mechanics - Downbursts are strong downdrafts that originate from thunderstorm clouds and create vigorous radial outflows upon hitting the ground. This study is part of the...  相似文献   

15.
16.
Environmental Fluid Mechanics - Inclined dense jets are commonly used to mitigate the environmental impacts of brine discharge in coastal desalination plants. Numerous studies have been performed...  相似文献   

17.
Environmental Fluid Mechanics - Discharged jet from desalination plants has harmful effects on the surrounding environment so that it is essential to investigate its behavior in detail. The aim of...  相似文献   

18.
19.
20.
This paper is concerned with the prediction of mass and momentum transport in turbulent wall jets developing over smooth and transitionally rough plane walls. The ability to accurately predict the resulting wall shear stresses and vertical profiles of the Reynolds stresses in these flows is prerequisite to the accurate prediction of bed scour, sediment re-suspension and transport by turbulent diffusion. The computations were performed by solving the Reynolds-averaged forms of the equations describing conservation of mass, momentum and concentration. The unknown correlations that arise from the averaging process (the Reynolds stresses in the case of the momentum equation, and the turbulent mass fluxes in the case of concentration) were obtained from the solution of modeled differential equations that describe their conservation. Since these models are somewhat more complex than those typically used in practice, their benefits are demonstrated by comparisons with results obtained from simpler, eddy-viscosity based closures. Comparisons with experimental data show that results of acceptable accuracy can be obtained only by using the appropriate combination of models for the turbulent fluxes of mass and momentum that properly account for the reduction of the Reynolds stresses due to wall damping effects, and for the modification of the mass transfer rates due to interactions with the mean rates of strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号