首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用Fenton试剂氧化法处理某钢铁厂焦化废水,对影响Fenton试剂处理焦化废水效果的因素进行分析,包括H_2O_2投加量、n[Fe~(2+)]∶m[H_2O_2]、p H值、反应温度、反应时间等。结果表明,对于该焦化废水最佳反应条件为:H_2O_2投加量50 m L/L(即每升水样投加量为50 m L),n[Fe~(2+)]∶m[H_2O_2]=1∶10,p H=3,反应温度为30℃,反应时间30 min,废水COD去除率可达到70%~79%。该研究为高浓度难降解废水处理提供了数据支持。  相似文献   

2.
采用Fenton氧化法降解硝化棉生产废水中的COD,考察了Fenton氧化主要参数对COD去除效果的影响。结果表明:在H_2O_2投加量为600 mg/L,n(Fe~(2+)):n(H_2O_2)=2:3,不调节pH值(初始pH值1),反应时间60 min,反应温度40℃时,废水的COD可以从263 mg/L降解到49.2 mg/L,COD去除率达到81.3%。Fenton氧化之后,投加氢氧化钙5 g/L中和,PAM 2 mg/L混凝沉淀,出水COD和pH值稳定达到GB 8978—1996《污水综合排放标准》一级排放标准。  相似文献   

3.
采用O_3/H_2O_2/Fe~(2+)均相催化臭氧氧化体系对煤气化废水进行深度处理,并对比了O_3和O_3/H_2O_2氧化体系的氧化效率。考察了连续O_3曝气试验条件下各影响因子对煤气化废水处理效果的影响。结果表明:在各自氧化体系最优条件下,O_3/H_2O_2/Fe~(2+)体系对煤气化废水的氧化效果最佳,其次为O_3/H_2O_2和O_3体系;在反应时间为40min,pH=6.01,O_3、H_2O_2和FeSO4·7H_2O投加量分别为126.2mg/L、57 mg/L和58.26 mg/L条件下,O_3/H_2O_2/Fe~(2+)均相催化臭氧氧化处理煤气化废水后,出水CODCr由126.2 mg/L降到29.1 mg/L,去除率为76.94%,色度、浊度的去除率分别为99.33%、70.64%;废水的BOD5/CODCr由初始0.04提高到0.35,废水的可生化性显著提高。研究表明,O_3/H_2O_2/Fe~(2+)均相催化臭氧氧化体系可以高效地对煤气化废水进行深度处理。  相似文献   

4.
选用黄钾铁矾作为类芬顿催化剂催化H_2O_2对废水中的吲哚进行处理,并采用XRD与XPS对黄钾铁矾进行表征分析。考察了该反应体系pH值、黄钾铁矾投加量、H_2O_2浓度以及无机阴离子等对去除效果的影响,并研究了其反应机制。结果表明:黄钾铁矾投加量2 g/L,H_2O_2浓度1 000 mg/L,pH=2.70的条件下吲哚的去除效果好,降解率可达78%,NO~-_3与SO_4~(2-)对吲哚的去除有抑制作用。通过甲醇淬灭实验证实了吲哚的降解过程中起主要作用的为羟基自由基。。  相似文献   

5.
研究了3种污泥预处理方法(表面活性剂处理、碱处理、Fenton处理)对污泥过滤脱水性能的影响。结果表明,对于3种预处理方法,使污泥过滤脱水性能最佳的阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)的投加质量比为50 mg/g,NaOH质量比为150 mg/g,Fenton试剂Fe~(2+)与H_2O_2的投加比n(Fe~(2+))∶n(H_2O_2)为1.5。3种预处理方法对污泥均有一定破解作用,其中由于Fenton反应的强氧化性,污泥破解率最大,污泥粒径减小了近50%,释放的溶解性COD(SCOD)最高(786.88 mg/L)。Fenton处理后的污泥紧密结合型胞外聚合物(Tightly Bound-Extracellular Polymeric Substances,TB-EPS)及TB-EPS中蛋白质和多聚糖的量减少得最多。此外,还分析了3种预处理方法脱水效率与速率的差异。  相似文献   

6.
为了解H_2O_2在实际处理饮用水中有机物的效果,研究了过氧化氢(H_2O_2)在常温常压下对氯化消毒副产物二氯乙腈(DCAN)和二溴乙腈(DBAN)去除效果及影响因素的规律,探究了H_2O_2投加量、初始pH值和反应物初始质量浓度对DCAN和DBAN去除效率的影响。结果表明,H_2O_2能较好地氧化降解DCAN和DBAN。当H_2O_2单独去除一种卤乙腈(Haloacetonitriles,HANs)时,加大反应物初始质量浓度促进氧化降解DCAN和DBAN的效果不明显,当反应5 min、反应物初始质量浓度为250μg/L时,DCAN和DBAN的去除率最高;过高或过低的pH值会抑制氧化反应的进行,pH=7. 5时,DCAN和DBAN的去除率达到最大,分别为46. 47%和43. 41%; H_2O_2在一定投加量(15~35 mmol/L)范围内,随H_2O_2浓度增加,DCAN、DBAN的去除率分别呈现先增加后降低和先增加后平缓的趋势,二者的H_2O_2最佳浓度分别为25 mmol/L和30 mmol/L。  相似文献   

7.
为了探讨高效去除环境中微量内分泌干扰物的方法,比较研究了Fenton氧化和UV/Fenton氧化2种高级氧化技术降解BP和DBP的条件与降解特性。结果表明,2种氧化体系在最佳反应条件为pH=4、Fe~(2+)/H_2O_2投加物质的量比1∶6、反应时间30 min时,BP和DBP的降解率均可达到93%以上;但在相同的降解率下,UV/Fenton体系所需氧化剂量分别比Fenton体系减少了1/4和2/3,且UV/Fenton体系降解产物达80%以上矿化。这表明与Fenton法比,UV/Fenton法为更高效的去除水中微量DBP和BP的方法。当DBP和BP混合共降解时,氧化剂投加量分别比单独降解减少了1/4和3/7,而其降解率均可达93%以上,表明两者间具有较好地协同促进作用。降解动力学分析表明,UV/Fenton(或Fenton)氧化降解BP和DBP的过程可分为·OH的快速生成、直接快速氧化阶段(反应的前5~10 min)和受Fe~(3+)/H_2O_2反应速率控制的缓慢降解2阶段,并可组合2个伪一级反应动力学模型较好地模拟整个反应过程,模型决定系数R~2 0. 99,均方根误差0. 2。  相似文献   

8.
为了提高脱硫废水的絮凝处理效果,采用磁絮凝技术对实际脱硫废水进行试验研究,以COD、浊度的去除率为评价指标,考察了磁粉投加量、聚合氯化铝(PAC)投加量、pH值、温度、药剂投加方式等因素对磁絮凝效果的影响。结果表明:PAC投加量为180 mg/L,磁粉投加量为400 mg/L,pH值为8,温度为30℃,投加方式为先加磁粉再加絮凝剂时处理效果最好,COD去除率达到65.62%,浊度去除率可达到69.96%,均明显优于现实际运行工艺的处理效果。  相似文献   

9.
混凝沉淀-微电解-催化氧化法处理促进剂M生产废水   总被引:1,自引:0,他引:1  
采用"混凝沉淀-微电解-催化氧化"法对橡胶促进剂M的生产废水进行处理.当原水COD约为5 g/L时, COD去除率可达96%以上,并得到最佳操作条件为:混凝工段PAM的投加量为1%,混凝时间为0.5 h;微电解工段铁炭质量比m(Fe):m(C)=30:1,pH值2-3,微电解时间3 h;催化氧化工段H2O2(30%)投加量为2%,反应时间为2 h.废水中绝大多数的苯胺、促进剂M等有机污染物和毒性较高的还原性硫化物均实现了高效去除,废水中TOC(总有机碳)、COD浓度显著下降.  相似文献   

10.
化学需氧量(COD)会受到来自众多高级氧化技术中添加的过氧化氢(H_2O_2)的干扰。为了评估低强度超声波辐射结合清除剂(Na_2CO_3或Na HCO_3)分解水样中残留H_2O_2的可行性,对去离子水、葡萄糖模拟废水和印染废水二级处理出水进行超声(超声波频率为39 k Hz,功率分别为75 W、112.5 W和150 W)处理,H_2O_2质量浓度为20 mg/L,时间为60 min或80 min,清除剂用量为50 g/L。以20 min的间隔测定H_2O_2质量浓度和COD。结果表明,COD与H_2O_2质量浓度的比值取决于废水的性质,去离子水、葡萄糖模拟废水和印染废水二级处理出水的比值分别为0.262 6 mg COD/mg H_2O_2、0.209 9 mg COD/mg H_2O_2、0.401 3 mg COD/mg H_2O_2。超声辐照对去除H_2O_2有一定的影响,但在去离子水中超声功率为150 W、60 min时的去除率最高,仅为18.1%。超声辐照联合清除剂Na_2CO_3或Na HCO_3的效果更显著。对于印染废水二次处理出水,加入Na HCO_3作为羟自由基清除剂,80 min时H_2O_2去除率达到97.3%。然而,由于Na HCO_3和H_2O_2形成的高度氧化的超氧离子能降解废水中的有机物质,水样的实际COD降低。用超声辐射结合Na_2CO_3处理80 min,将COD的测定值与通过COD、H_2O_2质量浓度比值得到的计算值进行比较,以确认经超声波联合Na_2CO_3处理的印染废水二级处理出水中的有机物未降解。研究表明,超声波照射与Na_2CO_3结合去除水样中的低浓度H_2O_2是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号