共查询到20条相似文献,搜索用时 0 毫秒
1.
Model of coral population response to accelerated bleaching and mass mortality in a changing climate
We model coral community response to bleaching and mass mortality events which are predicted to increase in frequency with climate change. The model was parameterized for the Arabian/Persian Gulf, but is generally applicable. We assume three species groups (Acropora, faviids, and Porites) in two life-stages each where the juveniles are in competition but the adults can enter a size-refuge in which they cannot be competitively displaced. An aggressive group (Acropora species) dominates at equilibrium, which is not reached due to mass mortality events that primarily disadvantage this group (compensatory mortality, >90% versus 25% in faviids and Porites) roughly every 15 years. Population parameters (N individuals, carrying capacity) were calculated from satellite imagery and in situ transects, vital rates (fecundity, mortality, and survival) were derived from the model, field observations, and literature. It is shown that populations and unaltered community structure can persist despite repeated 90% mortality, given sufficiently high fecundity of the remaining population or import from connected populations. The frequency of disturbance determines the dominant group—in low frequency Acropora, in high frequency Porites. This is congruent with field observations. The model of an isolated population was more sensitive to parameter changes than that of connected populations. Highest sensitivity was to mortality rate and recruitment rate. Community composition was sensitive to spacing of disturbances and level of catastrophic mortality. Decreased mortality led to Acropora dominance, increased mortality led to Acropora extinction. In nature, closely spaced disturbances have severely disadvantaged Acropora populations over the last decade. Unless a longer (>10 years) disturbance-free interval can be maintained, a permanent shift away from Acropora dominance will be observed. A mortality rate of 99% in Acropora, as observed in 1996, is not sustainable if repetitive and neither is a disturbance frequency <15 years—each leading to population collapse. This shows that the severity and/or the spacing of the 1996–1998–2002 disturbances were unusual in frequency and duration. 相似文献
2.
A pilot study was conducted at Davies Reef on the central Great Barrier Reef between 20 November 1991 and 20 January 1992 to assess the suitability of settlement collectors for measuring larval settlement rates of echinoderms on coral reefs. The collectors were deployed for two months during summer when many echinoderm species are known to spawn. A total of 657 newly settled echinoderms were recovered from just 47 collectors, each having a volume of just 0.005 m3 but with a utilisable surface area of about 1.44 m2, indicating that competent-to-settle larvae were very abundant during the sampling period. Echinoids (7.8 sampler-1) and ophiuroids (5.6 sampler-1) were the most abundant groups on the collectors. Asteroids (0.2 sampler-1) and crinoids (0.3 sampler-1 were less common. The asteroids were all identified to species and included the crown-of-thorns starfish Acanthaster planci, Choriaster granulatus and Culcita novaeguineae. The newly settled echinoids could not be distinguished from each other but included Echinometra mathaei and Mespilia globulus. The abundance of each of the five different classes of echinoderms on the samplers was correlated with their abundance on the natural substratum. Significant spatial variability was found in settlement rates of echinoids over 1000s of metres and ophiuroids over 100s of metres, but not over smaller spatial scales. It is concluded that the collectors can provide a useful tool for monitoring spatial and temporal variability in settlement rates of echinoderms on coral reefs and for testing hypotheses about patterns of larval dispersal. 相似文献
3.
Nicholas A. J. Graham 《Marine Biology》2007,153(2):119-127
Coral reefs are under threat due to climate-mediated coral mortality, which affects some reef coral genera more severely than
others. The impact this has on coral reef fish is receiving increasing attention, with one focal area assessing impacts on
fish that feed directly on live coral. It appears that the more specialised a species of corallivore, the more susceptible
it is to coral declines. However data are sparse for the Indian Ocean, and little is known about why some corals are preferentially
fed upon over others. Here I assess feeding specialisation in three species of coral feeding butterflyfish in the Chagos Archipelago,
central Indian Ocean, assess the food quality of the coral genera they target and document patterns of decline in the Seychelles
following a severe coral mortality event. Cheatodon trifascialis was the most specialised coral feeder, preferentially selecting for Acropora corals, however, when Acropora was scarce, individuals showed considerable feeding plasticity, particularly for the dominant Pocillopora corals. C. trifasciatus also preferentially fed on Acropora corals, but fed on a much more diverse suite of corals and also displayed some selectivity for Porites. C. auriga is a facultative corallivore and consumed ∼55% live coral, which lies within the wide range of coral dependence reported
for this species. C:N ratio analysis indicated Lobophyllia and Acropora have the highest food quality, with Pocillopora having the lowest, which conforms with diet selection of corallivores and helps explain preferential feeding. Obligate specialist
feeders displayed the greatest declines through coral mortality in the Seychelles with obligate generalists also declining
substantially, but facultative feeders showing little change. Clearly a greater understanding of the species most vulnerable
to disturbance, their habitat requirements and the functional roles they play will greatly assist biodiversity conservation
in a changing climate. 相似文献
4.
A strong earthquake in the western Caribbean in 2009 had a catastrophic impact on uncemented, unconsolidated coral reefs in the central sector of the shelf lagoon of the Belizean barrier reef. In a set of 21 reef sites that had been observed prior to the earthquake, the benthic assemblages of 10 were eradicated, and one was partially damaged, by avalanching of their slopes. Ecological dynamics that had played out over the previous 23 years, including the mass mortalities of two sequentially dominant coral species and a large increase in the cover of an encrusting sponge, were instantaneously rendered moot in the areas of catastrophic reef-slope failure. Because these prior dynamics also determined the benthic composition and resilience of adjacent sections of reef that remained intact, the history of disturbance prior to the earthquake will strongly influence decadal-scale recovery in the failed areas. Geological analysis of the reef framework yielded a minimum return time of 2000-4000 years for this type of high-amplitude event. Anthropogenic degradation of ecosystems must be viewed against the backdrop of long-period, natural catastrophes, such as the impact of strong earthquakes on uncemented, lagoonal reefs. 相似文献
5.
P. E. McShane 《Marine Biology》1991,110(3):385-389
In three wild populations ofHaliotis rubra surveyed off southeastern Australia during the three years 1987–1989, 0 to 10% post-settlementH. rubra survived for 5 mo. Sequential censuses (February, May and December in each year) provided evidence that mortality of post-settlementH. rubra increased with the density of settlement. The occupation of cryptic habitat byH. rubra soon after settlement may well be an adaptation for avoiding predators or grazers and dislodgement by violent water movement. 相似文献
6.
The influence of environmental variables on the planktonic growth, pelagic larval duration and settlement magnitude was examined for the coral reef surgeonfish Acanthurus chirurgus. Newly settled fish were collected daily from patch reefs in the San Blas Archipelago, Caribbean Panama for 3.5 years. Environmental influences on growth were examined at three different life history stages: from 0 to 6 days, 7 to 25 days and from 26 to 50 days after hatching. Larval growth was correlated, using multiple regression techniques, with a combination of factors including solar radiation, rainfall, and along-shore winds. Depending on the life history stage, these accounted for 13–38% of the variation in growth rates when all the months were included in the analyses. Correlations between environmental variables and growth also varied among seasons and were stronger in the dry than in the wet season. During the dry season solar radiation, rainfall and along-shore winds described 57%, 86% and 74% of the variability in growth between 0 and 6 days, 7 and 25 days and 26 and 50 days, respectively. During the wet season rainfall, along-shore winds and temperature only described 38% of the variability in early growth and 27% of growth just before settlement. No significant model was found to describe growth 7–25 days after hatching during the wet season. Rainfall, solar radiation and along-shore winds were negatively correlated with growth up to 25 days after hatching but positively correlated as larvae approached settlement at a mean age of 52 days. Over 65% of the variability in pelagic larval duration was accounted for by a regression model that included solar radiation and along-shore winds. When data sets from wet and dry seasons were analysed separately, along-shore winds accounted for 67% of the change in larval duration in the dry season, and solar radiation accounted for 23% of the variation in larval duration in the wet season. Only 22% of the variability in settlement intensity could be described by solar radiation and temperature, when all months of the year were included in the analysis. Solar radiation and rainfall were included in a regression model that accounted for 40% of the variation in numbers of fish settling during the dry season. This study suggests that the levels of solar radiation, along-shore winds and rainfall during the early larval life can have important effects on the growth, larval duration and consequently, the settlement magnitude of marine fishes. Results also highlight the need to account for seasonality and ontogeny in studies of environmental influences.Communicated by G.F. Humphrey, Sydney 相似文献
7.
Characteristics of the sexual reproduction and larval settlement of the haplosclerid spongeChalinula sp., which inhabits the shallow waters (1 to 6 m) of Eilat, Red Sea, were investigated from September 1985 through to November 1987. This species was found to be a simultaneous hermaphroditic brooder, hence gonochorism is not the rule in the order Haplosclerida. Brooding always takes place in special brooding chambers. While the oocytes in the brooding chambers are among the largest known in sponges (355±37µm), the spermatic cysts distributed in the choanosome are among the smallest known for this phylum (average 26±7µm).Chalinula sp. breeds throughout the year and in experiments most larvae (74%) settled within 1 to 8 h post-release, generally within 4.5 h. Metamorphosis from larval shape to a sessile sponge lasts 1 to 6 h. Thus, larvae had a short swimming period, settled fast, and metamorphosed rapidly (within 1 to 6 h). The large size of the larvae may contribute to their ability to rapidly reorganize their body shape into that of a sessile sponge. In addition, the existence of already differentiated choanocyte chambers in the larvae, facilitates fast construction of the water filtration system in the newly settled sponges. The reproductive and larval characteristics ofChalinula sp. enable the larvae to settle on any vacant space in the reef, which may explain its abundance in the Red Sea. 相似文献
8.
Safety in numbers and the spatial scaling of density-dependent mortality in a coral reef fish 总被引:2,自引:0,他引:2
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence. 相似文献
9.
J. Gilmour 《Marine Biology》1999,135(3):451-462
Laboratory and field experiments were used to determine whether high (≃100 mg l−1), low (≃50 mg l−1) and control (≃0 mg l−1) levels of suspended sediment affected fertilisation, larval survival, and larval settlement in the scleractinian coral Acropora digitifera (Dana, 1846). Both high- and low-sediment treatments significantly decreased fertilisation, but post-fertilisation embryonic
development was not inhibited by suspended sediments. Larval survival and larval settlement were significantly reduced in
high- and low-sediment treatments. No difference was found between high- and low-sediment treatments in any of the three post-spawning
processes investigated, suggesting that they are susceptible to sediment concentrations which are not exceptionally high even
under natural conditions (>50 mg l−1). The introduction of an additional stress in the form of high levels of suspended sediments coupled with naturally high
variability in recruitment may have a considerable effect on the successful supply and settlement of coral larvae to a reef.
Given that many coral communities are open reproductive systems, the consequences of disturbance events are not likely to
be restricted to the impact area. Recruitment to a population may be reduced significantly in the presence of high levels
of suspended sediments because of effects on larval survival and settlement. Recruitment of larvae to adjacent populations
may also be affected due to a decreased fertilisation success and potential increases in mortality of larvae passing through
the affected site.
Received: 13 August 1998 / Accepted: 22 July 1999 相似文献
10.
The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef 总被引:8,自引:9,他引:8
Pelagic larval duration (PLD) is a commonly used proxy for dispersal potential in coral reef fishes. Here we examine the relationship between PLD, genetic structure and genetic variability in geographically widespread and ecological generalist species from one coral reef fish family (Pomacentridae) that differs in mean larval duration by more than a month. The genetic structure was estimated in eight species using a mitochondrial molecular marker (D-loop) and in a sub-set of five species using nuclear molecular markers (ISSRs). Estimates of genetic differentiation were similar among species with pelagic larvae, but differed between molecular markers. The mtDNA indicated no structure in all species except one, while the ISSR indicated some structure between the sampling locations in all species. We detected a relationship between PLD and genetic structure using both markers. These relationships, however, were caused by a single species, Acanthochromis polyacanthus, which differs from all the other species examined here in lacking a larval phase. With this species excluded, there was no relationship between PLD and genetic structure using either marker despite a range of PLDs of more than 20 days. Genetic diversities were generally high in all species and did not differ significantly among species and locations. Nucleotide diversity and total heterozygosity were negatively related to maximum PLD but again these relationships were caused by A. polyacanthus and disappeared when this species was excluded. These genetic patterns are consistent with moderate gene flow among well-connected locations and indicate that at this phylogenetic level (i.e., within family) the duration of the pelagic larval phase is unrelated to the patterns of genetic differentiation. 相似文献
11.
Ian C. Enochs 《Marine Biology》2012,159(4):709-722
Coral reef cryptofauna are a diverse group of metazoan taxa that live within intra- and inter-skeletal voids formed by framework structures. Despite a hypothesized high biomass and numerous trophic roles, they remain uncharacterized relative to exposed reef communities. Motile cryptofauna were sampled from live coral colonies and dead frameworks typifying four successive levels of degradation on an eastern Pacific pocilloporid reef. Abundances and biomass were higher on live versus dead corals habitats. The density of cryptofauna per volume substrate was highest on dead coral frameworks of intermediate degradation, where complex eroded substrates provide abundant shelters. These data have important and far-reaching ramifications for how the diverse multispecies assemblages that are reef ecosystems will respond to anthropogenic stressors such as those associated with climate change. Extreme levels of coral mortality, bioerosion, and habitat destruction will lead to impairment and eventually loss of ecosystem functions. 相似文献
12.
Two complete collections of the fishes residing on an isolated coral patch reef ( 1500 m2) at Oahu, Hawaii, were made 11 years apart. Of the 112 species of fishes in both collections combined, only 40% were in common, but these made up more than 85% of the wet biomass in each collection. The two assemblages of fishes were similar in trophic structure and standing crop. Many coral reef fish communities are dominated by carnivorous forms. In the present study, planktivorous fishes were the most important trophic group in the community; this was related to abundant zooplankton resources. Following the second collection in 1977, recolonization by fishes was followed for 1 year. Recolonization proceeded rapidly and was primarily by juvenile fishes well beyond larval metamorphosis. Within 6 months of the second collection, the trophic structure had been re-established. The MacArthur-Wilson model of insular colonization described the recolonization process and predicted an equilibrium situation in less than 2 years. The recolonization data suggested that chance factors may explain the colonization process on a small scale, but a relatively deterministic pattern emerged when considering the entire reef. Thus, at the community level the fishes are a persistent and predictable entity. 相似文献
13.
J. A. Stoddart 《Marine Biology》1984,81(1):19-30
Genetic variation of allozymes within populations of Pocillopora damicornis from southwestern Australia was consistent with a primary role of local asexual proliferation of clones in population maintenance. Populations were composed typically of two to four multilocus genotypes accounting for 40 to 80% of individuals, with the remainder assigned to genotypes occasionally in twos or threes but more commonly singly. In the three populations where recruitment was examined genetically, 84% of all first-year recruits was assigned to clones represented in the population's resident adults. The majority of these recruits came from the most highly-replicated of the adult clones. The observed genotypic diversity was, on average, about half that calculated to occur for the same allelic frequencies in a sexually-reproducing population with free recombination. Despite the prevalence of asexual reproduction, both through planulae and fragments, the existence of a sexual mode of reproduction was inferred from the high level of variation produced by pooling populations, the existence of novel genotypes and the concordance of clonal gene frequencies at many sites with the predictions of Hardy-Weinberg equilibria. 相似文献
14.
The genetic structure of Mycedium elephantotus (Pallas, 1766) populations from three regions around Taiwan was examined using allozyme electrophoresis. Eight loci were scored from seven enzyme systems. Seven loci were polymorphic under the 95% criterion. The high ratio of observed to expected genotypic diversities at the collection sites (G O:G E=0.8 to 1.0) indicate that M. elephantotus propagates predominantly by sexual reproduction. Allele frequencies of M. elephantotus differed significantly among regions (D=0.024 to 0.256, F ST=0.032 to 0.218, p < 0.001), while populations among collection sites within each region were homogeneous (D=0.000 to 0.015, F ST=0.010 to 0.022, p > 0.05). Genetic differentiation between populations from southern Taiwan and the Penghu Islands is greater than that between southern and northern Taiwan populations, although the former two regions are much closer geographically. The UPGMA dendrogram based on Nei's unbiased genetic distance showed a clear subdivision of populations into two groupings, northern Taiwan/Penghu Islands and southern Taiwan. A higher level of gene flow was found between M. elephantotus populations in northern Taiwan and the Penghu Islands (N m=7.56) than that between populations in southern Taiwan and other regions (N m=0.90 to 1.72). The pattern of genetic subdivision among regions is consistent with the pattern of ocean currents, indicating that genetic differentiation is likely driven by surface circulation vicariance. Received: 2 December 1997 / Accepted: 15 September 1998 相似文献
15.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities. 相似文献
16.
W. M. Goldberg 《Marine Biology》1976,35(3):253-267
The comparative morphology of the axial skeleton was studied in representatives of 5 reef-dwelling gorgonian families and 2 antipatharian genera by electron and light microscopy. Comparative axial histochemistry, amino acid composition and the physico-chemical character of the protein were also studied. Evidence obtained indicates that collagen is a widespread and prominent structural feature of the gorgonian axial skeleton. Aromatic crosslinkage (sclerotization) also appears to be of widespread, if not universal occurrence in these animals. Sclerotization is equally characteristic of the black coral skeletons studied, but this material does not contain collagen. Its unusual composition, structure, and reactivity is discussed. 相似文献
17.
Individuals of the pit crabs Cryptochirus coralliodytes Heller inhabit massive corals of the family Faviidae. Their pit walls were observed to be covered by blue-green algae and
fungi. We suggest that the crabs enhance the growth of these algae and fungi with their metabolic excretions, which contain
ammonium. The endolithic algae and the fungi may facilitate the abrasion of the coral skeleton by the crabs, by perforating
it and thus weakening the skeletal structure. Computerized tomography analysis revealed dense skeletal material around the
pits. Transverse sections showed that the calcification around the pit was similar to other parts of the colony, whereas the
macro-architecture was different. Such a difference is the result of the crabs' influence on the corals' living tissue, possibly
on the calicoblast which deposits the coenosteum. Crabs, which were exposed to carbon-labeled corals for 1, 7 and 18 d, accumulated
labeled carbon, indicating transfer of carbon from the coral tissue to the crabs. Histochemical examination of the stomach
and gut of crabs revealed the presence of mucopolysaccharids in the gut, supporting the hypothesis that the crabs eat coral
products. The findings of this study provide additional evidence that C. coralliodytes are parasites and support the general hypothesis that a nutritional relationship may have served as a basis for selection.
Received: 20 October 1998 / Accepted: 29 April 1999 相似文献
18.
Infection of copepods by parasitic dinoflagellates has been known for many years, but the ecological consequences of this parasitism have been largely neglected. We estimated mortality rates in the copepodParacalanus indicus Wolfenden due to parasitism by the dinoflagellateAtelodinium sp. by applying laboratory mortality rates to a field population of infected copepods in Port Phillip Bay, Australia, sampled in 1982–1985. Adult female copepods were most often infected, with an incidence of 0 to 28.5% (median 6.2%). Stage V female copepodites were less often infected, and males were never infected. The median mortality rate in females was about 7% d–1, or about one-third of total mortality, and the maximum was 41% d–1. The frequent occurrence of dinoflagellate parasitoids in some species of copepod implies an important, species-specific mechanism for the regulation of populations. 相似文献
19.
The azooxanthellate coral Acabaria biserialis Kükenthal, 1908 (Octocorallia: Alcyonacea) is highly abundant on the vertical underwater structures of the oil jetties at
Eilat (Red Sea), but it is rare on the adjacent natural reefs. To understand its success on such artificial substrata we examined
various aspects of its life history and population dynamics. A. biserialis is a gonochoric brooder. The percentage of colonies on the artificial substrata bearing gonads ranged from none (September
1994 and 1995) to 100% (January 1994, 1995 and April 1994). Mature oocytes and sperm sacs reached rather small maximum diameters
of 240 and 160 μm, respectively, probably dictated by the small gastrovascular cavities. A continuous release of planulae
was observed in the laboratory from March to July 1995. Planulation occurred during various lunar phases, and both by day
and night. Recruitment of A. biserialis on PVC plates attached to the jetties coincided with the breeding period inferred from the laboratory findings. Recruits
reached a maximum height of 3 cm within 3 months, thus exhibiting a remarkably rapid growth rate compared with other gorgonians.
This high colony growth rate may compensate for the lack of clonal propagation in the studied A. biserialis population. The complex substrata of the jetties provide the conditions required for successful colonization, which include
upside-down orientation, an adequate light regime and exposure to flow. The findings of our study may provide a useful contribution
to the design of artificial reefs aimed at attracting rapid colonization by A. biserialis colonies.
Received: 30 December 1998 / Accepted: 19 August 1999 相似文献