首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
使用滇池水域10个观测站(外海8个,草海2个)上TN、TP、CODMn、DO、BOD、叶绿素a等6个指标在2a间(2005~2006)每个月的观测数据,利用时空地质统计学计算了各指标的时空变异函数和进行了普通克立格估值。从结果来看,时空变异函数可以较好地刻划环境变量与时空变化之间的关系,能更精确地估计环境变量在时间和空间的分布。从各水质指标的模拟结果来看,滇池的污染严重区域主要为北部的昆明城区、东北部的呈贡、东部的大渔地区。  相似文献   

3.
基于时空地质统计学的滇池水质时空分布模拟   总被引:1,自引:0,他引:1  
使用滇池水域10个观测站(外海8个,草海2个)上TN、TP、CODMn、DO、BOD、叶绿素a等6个指标在2a间(2005~2006)每个月的观测数据,利用时空地质统计学计算了各指标的时空变异函数和进行了普通克立格估值。从结果来看,时空变异函数可以较好地刻划环境变量与时空变化之间的关系,能更精确地估计环境变量在时间和空间的分布。从各水质指标的模拟结果来看,滇池的污染严重区域主要为北部的昆明城区、东北部的呈贡、东部的大渔地区。  相似文献   

4.
滇池草海水质变化趋势和特征污染物分析   总被引:1,自引:0,他引:1  
根据滇池草海2002—2011年的年均值水质监测数据、《地表水环境质量标准》和《滇池水环境质量地方评价规定》,运用综合水质指数法(WQI)计算得到综合水质指数,结合滇池治理工程,对草海10年来水质变化趋势进行分析。结果显示:1第一类重金属指标水质评价优良,2004—2007年,草海的第一类项目水质呈现下降趋势,2007年达到10年来最差情况。第二类分类指数为72~92,评价为严重污染,不安全级别。2009年水质最差,第二类污染物指数成为WQI的贡献值,是草海的主要污染物。第三类分类指数为3~32,水质优良,水质安全程度为安全级。2滇池水质波动的主要因素是富营养类污染物,特征污染物是总磷和总氮。  相似文献   

5.
“十一五”期间滇池水质变化及原因   总被引:4,自引:0,他引:4  
根据2006~2010年滇池水质监测数据,分析了“十一五”期间滇池水体富营养化主要指标的变化情况,结果表明滇池水体的富营养化程度虽有所下降,但水质整体仍属于重度富营养化状态,认为昆明市在“十一五”期间为治理滇池所作的大量工作其成效还未完全显现。  相似文献   

6.
文章基于2008~2017年赤水河流域上游-赤水、中游-茅台、下游-鲢鱼溪断面水质、径流和降雨等水文气象数据,分析了流域水质时空变化特征及其与径流、降雨、白酒工业等影响因素的相关性.结果表明,近10年来,上游断面CODMn、NH3-N和TP的含量均呈下降趋势,而中游和下游断面CODMn、NH3-N呈现增加趋势,只有TP...  相似文献   

7.
土地利用变化影响着浅层地下水水质,以滇池流域为研究对象,综合运用遥感影像解译、马尔科夫转移矩阵和冗余分析,对近20年(2002~2020)滇池流域土地利用和浅层地下水质变化进行分析,揭示长时间尺度下土地利用变化对浅层地下水水质的影响.结果表明:2002和2020年滇池流域土地利用类型以草地、林地和耕地为主,分别占总面积20.91%和17.43%、43.21%和37.99%、22.11%和17.08%,2002~2020年间耕地向建筑用地和林地、林地向草地和耕地、草地向林地和建筑用地转移概率分别为22.59%和20.72%、13.16%和10.49%、26.30%和15.65%,耕地面积减少146km2,建筑用地面积增加279km2.2002~2020年滇池流域浅层地下水化学类型由HCO3-·SO42--Mg2+型转变为HCO3-·SO42--Ca<...  相似文献   

8.
为掌握八里河流域污染成因、污染集中期和重污染地带,在八里河流域设置了7个河道监测断面及33个地下水监测点位,连续1年监测了地表水COD、氨氮、TP和地下水氨氮、硝酸盐、亚硝酸盐,分析了八里河流域水质时空变化趋势,提出了相应的污染控制措施。结果表明:受淀粉加工污染影响,各项指标在10~12月迅速上升,COD在第二年4月以后逐渐降低恢复至正常值,氨氮和TP难以达标;地表水污染以柳沟最为严重,五里湖沟次之,第三湖沟水质相对最好;淀粉废水还会通过淋滤进入浅层地下水,造成地下水氨氮污染;氨氮污染最初主要集中在流域西南方,逐渐向全流域扩散。针对当地突出的红薯淀粉加工废水污染问题,建议推广低污染的淀粉生产技术,制定适用于八里河流域的规范化与标准化农业面源污染控制技术,构建小流域农业面源污染控制系统与管理模式。  相似文献   

9.
为给进一步实施滇池入湖污染控制及小流域污染治理提供依据,以滇池环湖28条河流入湖水量及水体中不同形态氮的质量浓度逐月调查数据为基础,研究了滇池河流不同形态氮的入湖浓度(ρ)和入湖负荷的时空变化,并探讨了不同形态氮的入湖负荷贡献. 结果表明:①滇池河流入湖ρ(TN)在2.91~94.01 mg/L之间,以ρ(DIN)(DIN为溶解性无机氮)最高,而ρ(DON)(DON为溶解性有机氮)和ρ(PN)(PN为颗粒态氮)均较低. ②滇池河流氮入湖负荷总量为6 908.47 t/a,绝大多数河流以DIN负荷为主,平均贡献为67.15%;DON和PN入湖负荷贡献相近,平均分别为17.86%和14.99%. ③不同形态氮入湖负荷贡献的季节性差异明显,DIN入湖负荷较高值出现在春夏季(3—9月),平均贡献达74.01%;DON入湖负荷较高值则出现在秋冬季(9月—翌年1月),平均贡献达33.42%;PN入湖负荷贡献月份变化差异较小,最高值出现在2月,贡献为40.19%. ④滇池河流氮入湖负荷不仅要考虑DIN的贡献,也应重视DON和PN负荷,控制滇池河流氮入湖负荷需要考虑不同河流不同形态氮负荷组成及其季节性差异,有针对性地采取相应措施.   相似文献   

10.
精细识别湖泊水质的时空变化特征是确定流域污染调控措施的基础.贝叶斯方差分析具有灵活的模型结构,可直接表征变量的时空动态特征.本文据此提出了基于该方法的湖泊水质时空变化特征识别的方法框架,研究了异龙湖稳态转换条件下富营养化指标的变化特征和滇池外海特征污染物达标率的时空变化2个案例,验证了该方法在总体服从正态分布和二项分布时的适用性.针对参数可交换性假设被忽视的问题,本文提出了一种基于模型选择准则的判定方法,并将其应用于滇池案例中.结果表明:(1)相对于清水稳态,异龙湖在浊水稳态时3种富营养化指标浓度更高,且年际方差所占总方差比例减小;(2)滇池外海总氮浓度超标率由2007—2013年间的40%左右降到2014—2016年间的10%左右,且波动性降低.随着监测数据的积累和监测时空精度的增加,贝叶斯方差分析在湖泊水质时空变化特征识别中具有广阔的应用前景.  相似文献   

11.
对滇池草海换水对其水质及底泥产生影响的分析研究表明,草海换水改变了湖流条件,改善了其南部水质状况,对外海水质有一定保护作用,对底泥的迁移难以产生影响。  相似文献   

12.
滇池草海间隙水与上覆水氮磷时空变化特征   总被引:3,自引:1,他引:3  
本文连续12个月监测了滇池草海柱状沉积物间隙水和上覆水不同形态氮磷浓度的垂向变化,揭示了不同季节间隙水与上覆水氮磷浓度差异及其形态组成贡献率,探讨了间隙水氮磷组成及氮/磷比值在湖泊富营养化及内负荷控制中的重要意义.结果表明:(1)草海间隙水NH_4~+-N浓度显著高于上覆水,而上覆水中NO_3~--N浓度显著高于间隙水,春、夏和秋季(2~11月)间隙水SRP浓度显著高于上覆水,而冬季(12月和1月)则与之恰好相反;(2)草海间隙水以NH_4~+-N和SRP贡献为主,分别占DTN和DTP的61%和78%,而上覆水则以DON和DOP贡献为主,分别占DTN和DTP的44%和81%,与春季和冬季相比,夏、秋季间隙水NH_4~+-N和SRP贡献率显著增加,而NO_3~--N、DON和DOP贡献率明显下降;(3)草海间隙水DTN/DTP、(NH_4~+-N+NO_3~--N)/SRP和DON/DOP比值均表现为春季冬季夏季秋季,而上覆水氮/磷比值则以春季较高,夏、秋和冬季相对较低.  相似文献   

13.
蓟运河流域地表水质时空变化特征分析   总被引:13,自引:2,他引:13  
通过对不同时段和不同监测点环境监测数据的对比分析 ,研究蓟运河干流地表水质的时空变化特征 .结果发现 ,在空间上 ,蓟运河干流自上游至下游 ,地表水质总体上表现为不断恶化的趋势 ;在时间上 ,除了 NH4-N浓度有增加的趋势外 ,其它各项监测指标的浓度 ,1998年与 1995年和 1990年相比 ,没有明显的变化 .分析影响蓟运河地表水质变化的原因主要为 :土地利用结构变化 ,如耕地面积增加和林草地面积减少 ;城镇集中区大量工业废水和生活污水的排放 .  相似文献   

14.
为了表征滇池流域20多年来的底泥重金属生态风险,用Hakanson潜在生态危害指数评价法和Muller地积累指数法对滇池湖体及其5条主要入湖河流的重金属污染进行时空特征评价。就空间分析,得出以下结论:(1)对于滇池湖体,两种评价方法结果一致,即草海污染程度大于外海,并且滇池湖体中污染程度最高的重金属为Cd;(2)对于滇池主要入湖河流,两种方法得到一致的污染程度排序:运粮河>新河>船房河>盘龙江>大清河;(3)关于入湖河流中污染程度最高的重金属,潜在生态危害指数法评价为:船房河、大清河、盘龙江是重金属Hg风险最高,而运粮河和新河是重金属Cd的风险最高。而通过地累积指数评价法得到,5条河流均是重金属Cd的污染程度最高。评价结果的差异,主要是由于潜在生态危害指数法较之地累积指数法还另外考虑了污染因子的毒性特征而产生的。就时间变化分析,以1989年和2005年为例,除了重金属Cr有上升趋势,其余金属总体上呈现随时间下降的趋势,说明滇池流域20多年来的污染治理工作取得了一定的成效。  相似文献   

15.
文章采用WPI水污染指数法评价滇池北岸各片区河道的水质,并分析其变化趋势,同时采用pearson相关分析方法研究旱季和雨季各片区河道WPI指数变化趋势的相关度。结果表明:1988-2001年滇池北岸河道水质污染主要为减轻的趋势;2001-2007年随着昆明市的大规模扩张,其加重趋势非常明显;2007-2009年,随着河道水环境综合整治工程的大规模开展,又主要表现为减轻趋势,且旱季水质污染减轻的趋势比雨季明显,在纳入统计的5个片区河道中,旱季有4个片区河道水质好转,雨季有3个片区河道水质好转。这是由于2007-2009年间开展的河道水环境综合整治工程主要针对点源污染控制。此外,由于面源污染特征在5个片区中的4个片区都非常相似,雨季各片区河道WPI指数变化趋势的相关度比旱季高。  相似文献   

16.
2008年滇池流域水环境承载力评估   总被引:1,自引:0,他引:1  
自20世纪70年代以来,随着经济迅猛发展以及人口的快速增长,滇池流域的水环境问题日益突出. 为深入了解造成当前水环境问题的根本原因,以水资源承载力和水环境承载力作为广义水环境承载力的基础进行综合分析,并且利用水资源供需平衡和水资源承载压力度反映水资源承载力,利用水环境承载率反映水环境承载力. 结果表明:滇池流域TN和TP的水环境承载率分别为0677和0355,处于超载状态,是导致滇池流域严重富营养化的主要原因;水资源承载压力度为145,远大于供需平衡,同样也处于超载状态,实际水资源盈亏为-59 037×104 m3,缺失严重. 因此,滇池流域水质型和资源型缺水问题共同存在.   相似文献   

17.
基于EFDC模型的滇池水质模拟   总被引:7,自引:0,他引:7  
陈异晖 《云南环境科学》2005,24(4):28-30,46
从应用层面介绍EFDC模型的主要编程原理和数据结构,以及主控文件、初始化数据、气象和负荷数据以及模型输出的内容和结构。利用1988、1989年的负荷数据和观测资料,对滇池水质进行了模拟。结果表明,模型的水动力模块模拟结果与实际情况较接近,水质模块的模拟结果尚可接受,模型实用程度的提高有赖于基础数据的积累。  相似文献   

18.
为研究太湖湖滨带水体藻密度、水质及风作用的时空分布特征,于2010年春、夏季调查了太湖湖滨带的水质、藻密度,同时结合风级、风向等数据,运用偏相关法分析了藻密度分布与水质、风作用的相关关系. 结果表明:春季湖滨带水体藻密度低于夏季,平均值分别为1.88×106、1.75×108 L-1,竺山湾、梅梁湾、西部沿岸藻密度较高. 太湖湖滨带水体ρ(TP)、ρ(TN)、ρ(NO3--N)、ρ(NH3-N)、ρ(CODMn)春季平均值分别为0.10、4.48、0.99、2.36、6.46mg/L ,夏季分别为0.16、2.09、0.60、0.43、6.73mg/L,其中高值主要分布在竺山湾、西部沿岸、梅梁湾湖滨带;在时间上,ρ(TN)、ρ(NH3-N)、ρ(DO)春季较高;ρ(TP)、pH夏季较高. 太湖湖滨带春、夏季风作用均以向岸的正作用力为主,夏季和春季风力作用平均值分别为0.26和0.73.风作用值较高的区域出现在梅梁湾、贡湖、西部沿岸. 偏相关分析结果表明:春、夏季藻密度分布均与风作用值呈显著正相关;春季只有透明度与藻密度的分布显著相关,夏季藻密度分布与ρ(CODMn)、ρ(SS)呈显著性正相关,而与pH呈显著负相关. 在富营养化严重的太湖,N、P等营养盐已经不再是藻类暴发的限制因子,而风作用及与之密切相关的湖流,北部竺山湾、梅梁湾似口袋状的地理形态,是影响藻密度分布的重要因素;另外,入湖河流污染对北部、西北部湖滨带自生藻类的滋生,水生植物、浮游动物对藻类分布也会有不同程度的影响.   相似文献   

19.
洞庭湖氮磷时空分布与水体营养状态特征   总被引:8,自引:0,他引:8  
为揭示通江湖泊洞庭湖水体、沉积物营养盐的时空分布特征,分别于2012年1月和6月在入湖河道、湖区和出湖口共采集了13个具有代表性的水样和沉积物样品,分析了样品中氮、磷的含量及洞庭湖的营养水平. 结果表明,洞庭湖水体中ρ(TN)、ρ(TP)、ρ(NH4+-N)和ρ(NO3--N)全湖平均值分别为2.34、0.06、0.27和0.54mg/L,沉积物中w(TN)、w(TP)、w(NH4+-N)、w(NO3--N)全湖平均值分别为1220.47、678.97、28.94、4.41mg/kg. 氮、磷含量总体表现为入湖河口大于湖体和出湖口,并且入湖河流中以湘江支流较高,湖体以东洞庭湖区较高. 不同季节间的对比表明,水和沉积物样品中氮、磷含量均表现为6月高于1月,尤其水体中ρ(TN),6月显著高于1月(P<0.01). 洞庭湖全湖TLI(∑)(综合营养状态指数)平均值为45.93,分布规律与ρ(TN)、ρ(TP)一致. 与其他富营养化湖泊相比,洞庭湖ρ(TN)、ρ(TP)较高,但没有发生大面积水华,主要是因为其换水周期短、流速较大所致.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号