首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polyester polyol was synthesized from oleochemical glycerol monostearate (GMS) and glutaric acid under a non-catalyzed and solvent-free polycondensation method. The chemical structure of GMS-derived polyester polyol (GPP) was elucidated by FTIR, 1H and 13C NMR, and molecular weight of GPP was characterized by GPC. The synthesized GPP with acid value of 3.03 mg KOH/g sample, hydroxyl value of 115.72 mg KOH/g sample and Mn of 1345 g/mol was incorporated with polyethylene glycol (PEG) and polycaprolactone diol (PCL diol) to produce a water-blown porous polyurethane system via one-shot foaming method. The polyurethanes were optimized by evaluating glycerol as a crosslinker, silicone surfactant and water blowing agent on tensile properties of polyurethanes. All polyurethanes underwent structural change, and crystalline hard segments of polyurethanes were shifted to higher temperature suggested that hard segments undergone re-ordering process during enzymatic treatment. In terms of biocompatibility, polyurethane scaffold produced by reacting 100% w/w of GPP with isophorone diisocyanate and additives showed the highest cells viability of 3T3 mouse fibroblast (94%, day 1), and MG63 human osteosarcoma (107%, day 1) and better cell adhesion as compared to reference polyurethane produced by only PEG and PCL diol (3T3 cell viability: 8%; MG63 cell viability: 2%). The current work demonstrated GPP synthesized from renewable and environmental friendly resources produced polyurethanes that allows improvement in physico-chemical, mechanical and biocompatibility properties. By blending with increasing content of GPP, the water-blown porous polyurethane scaffold has shown great potential as biomaterial for soft and hard tissue engineering.  相似文献   

2.
The aliphatic polyurethanes based on atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB) and commercial oligomerols: poly(ε-caprolactone)diol and polyoxytetramethylenediol were investigated. a-PHB was obtained by anionic ring-opening polymerization of (R,S)-β-butyrolactone. The 4,4′-methylenedicyclohexyl diisocyanate and 1,4-butanediol were used as contributors of hard segments. The aim of the study was to determine the influence of synthetic, atactic a-PHB in soft segments of polyurethanes on their degradability in simulated body fluids (SBF) and Ringer solution. The incubation of polymer samples in both degradative solutions was carried out for 36 weeks. It was concluded that the presence of a-PHB in polyurethane structure accelerated their degradation in SBF and in Ringer solution and, protected the calcification process.  相似文献   

3.
Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.  相似文献   

4.
The anaerobic biodegradation rates of four different sizes of poly (lactic acid) (PLA) films (thickness 25???m) in anaerobic sludge at 55?°C were examined. The anaerobic biodegradation rates of small pieces of PLA film were slower than for large pieces of PLA film. We also examined whether PLA film could also be used as a reference material in the anaerobic biodegradation test in addition to PLA powder. The anaerobic biodegradation rate of PLA film became slower with lower activity sludge, but the rate of decrease was gradual, and the anaerobic biodegradation rate of PLA film was faster than the PLA powder (125?C250???m). The anaerobic biodegradation rate of the PLA powder (125?C250???m) reflected the plastic anaerobic biodegradation activity of the sludge more accurately than the thin PLA film (thickness 25???m). Consequently, PLA powder (125?C250???m) is more suitable than thin PLA film (thickness?<?25???m) for use as a reference material to assess the plastic anaerobic biodegradation activity of the sludge in an anaerobic biodegradation test at 55?°C.  相似文献   

5.
The potential biodegradability of several vegetable oil-based polymers was assessed by respirometry in soil for 60–100 days at temperatures of 30–58°C. Films of soybean oil and linseed oil which were oxidatively polymerized (Co catalyst) on a kraft paper support were 90%–100% mineralized to CO2 after 70 days at 30°C. Mineralization of polymerized tung oil to CO2 was much slower than soy or linseed oils. Mineralization of epoxy resins made from epoxidized soybean oil (ESO) and aliphatic dicarboxylic acids was rapid while mineralization of similar resins made with a triacid (citric) was slower. There was no significant degradation of polyamine/ESO resins after 100 days at 58°C. Mineralization of the available carbon in vegetable oil polyurethanes and cationically polymerized ESO was less than 7.5% after 70 days at 30°C and 25 days at 55°C compared to 100% for soybean oil. From these results, it appears that triglycerides highly cross-linked with non-degradable linkages are not biodegradable to a significant extent while triglycerides cross-linked with hydrolysable bonds such as esters remain biodegradable.  相似文献   

6.
A novel fluorine-containing copolymer surfactant was synthesized via free radical copolymerization from maleic anhydride and rapeseed oil firstly, and then followed by an esterification reaction with dodecafluoro heptanol. The reaction progresses were monitored on-line by FTIR and the copolymerization was characterized by molecular weight (GPC) analysis. Simultaneously, the surface tension and critical micelle concentration (CMC) together with the biodegradability of the fluorine-containing copolymer surfactant were investigated in detail. The results indicate that this fluorine-containing surfactant with Mw of 66000 g/ mol and Mn of 38800 g/mol shows a strong surface tension lowering ability, the CMC is 0.1 g/L, the surface tension value at the CMC (γCMC) is 22.5 mN m−1 and less than the corresponding copolymeric hydrocarbon surfactant; the evaluation of biodegradability indicates that the biological respiration curve of the fluorine-containing copolymer surfactant with concentration of 1000 mg/L is above the endogenous respiration curve; the BOD5/COD value is higher than 0.45; the COD and TOC removal ratios after 5 days of biodegradation reach 91.0 and 89.4%, respectively, showing good biodegradability and environmental-friendly feature.  相似文献   

7.
Polycaprolactone (PCL) powders were prepared from PCL pellets using a rotation mechanical mixer. PCL powders were separated by sieves with 60 and 120 meshes into four classes; 0–125 μm, 125–250 μm, 0–250 μm and 250–500 μm. Biodegradation tests of PCL powders and cellulose powders in an aqueous solution at 25°C were performed using the coulometer according to ISO 14851. Biodegradation tests of PCL powders and cellulose powders in controlled compost at 58°C were performed by the Mitsui Chemical Analysis and Consulting Service, Inc. according to ISO 14855-1 and by using the Microbial Oxidative Degradation Analyzer (MODA) instrument according to ISO/DIS 14855-2. PCL powders were faster biodegraded than cellulose powders. The reproducibility of biodegradation of PCL powders is excellent. Differences in the biodegradation of PCL powders with different class were not observed by the ISO 14851 and ISO/DIS 14855-2. An enzymatic degradation test of PCL powders with different class was studied using an enzyme of Amano Lipase PS. PCL with smaller particle size was faster degraded by the enzyme. PCL powders with regulated sizes from 125 μm to 250 μm are proposed as a reference material for the biodegradation test.  相似文献   

8.
In this work, a major fatty acid from coconut oil was used as starting material in preparing biodegradable polymers. Thus, polyesters and polyamides from varying proportions of monomers, hydroxy- and amino- derivatives of lauric acid were synthesized. Initially, the derivatives were prepared by regioselective chlorination of lauric acid, in the presence of ferrous ions in strong acid medium. Subsequent hydroxylation and amination procedures yielded the hydroxy- and amino- derivatives of lauric acid. These monomers were polymerized in a reaction tube by simple polycondensation method at 220–230 °C for 6–8 h without catalyst. Molecular weight determination using –COOH by end group titration and gel permeation chromatography (GPC) gave an average molar mass of 3,000–5,000 g mol−1 with n = 15–25 monomer units. Thermal properties such as glass transition (Tg) and decomposition (Td) temperatures were obtained using differential scanning calorimetry (DSC). The same processes of synthesis and determinations above were applied to coconut fatty acids, derived from saponification of coconut oil, and resulted to very similar conclusions. A quick biodegradation assay against fungus Aspergillus niger UPCC 4219 showed that the polymers prepared are more biodegradable than conventional plastics such as polypropylene, poly(ethyleneterepthalate) and poly(tetrafluoroethylene) but not as biodegradable as cellulosic (newsprint) paper.  相似文献   

9.
This study investigates the processability and biodegradability of composite bioplastic materials. Biocomposites were processed using twin-screw compounding of the bioplastic poly(butylene succinate) (PBS) with bio-based fillers derived from co-products of biofuel production. An extensive biodegradability evaluation was conducted on each biocomposite material, as well as the base materials, using respirometric testing to analyze the conversion of organic carbon into carbon dioxide. This evaluation revealed that the presence of meal-based fillers in the biocomposites increased the rate of biodegradation of the matrix polymer, degrading at a faster pace than both the pure PBS polymer and the switchgrass (SG) composite. This degradation was further confirmed using FT-IR and thermal analysis of the material structure before and after biodegradation. The increased biodegradation rate is attributed to the high concentration of proteins in the meal-based composites, which enhanced the hydrolytic biodegradation of the material and facilitated micro-organism growth. The SG-based composite degraded slower than the pure polymer due to its lignin content, which degrades via a different mechanism than the polymer, and slowed the biodegradation process.  相似文献   

10.
The environmental impact caused by the disposal of plastics has motivated the development of biodegradable materials. Recent studies showed that supplementation with oleic acid (OA) in cultures producing poly(3-hydroxybutyrate), P(3HB), increased the polymer productivity. However only few studies have shown the properties and biodegradation profile of the polymer obtained. This research investigated the influence of OA concentration on the biodegradation of the P(3HB) obtained from cultures of Cupriavidus necator. The crystallinity of the casting films determined by differential scanning calorimetry (DSC) was reduced from 70% (0 g L−1 of OA) to 52% (3.0 g L−1 of OA). A reduction of 11 °C in the melting temperature was observed with 3.0 g L−1 of OA. The kinetic of biodegradation was: 3.0 > 1.5 > 0.9 > 0.3 > 0 g L−1 of OA.  相似文献   

11.
Polyols and Polyurethanes from Hydroformylation of Soybean Oil   总被引:10,自引:0,他引:10  
This paper compares physical and mechanical properties of polyurethanes derived via the hydroformylation approach and is a part of our study on the structure–property relationships in polyurethanes created from vegetable oils. The double bonds of soybean oil are first converted to aldehydes through hydroformylation using either rhodium or cobalt as the catalyst. The aldehydes are hydrogenated by Raney nickel to alcohols, forming a triglyceride polyol. The latter is reacted with polymeric MDI to yield the polyurethane. Depending on the degree of conversion, the materials can behave as hard rubbers or rigid plastics. The rhodium-catalyzed reaction afforded a polyol with a 95% conversion, giving rise to a rigid polyurethane, while the cobalt-catalyzed reaction gives a polyol with a 67% conversion, leading to a hard rubber having lower mechanical strengths. Addition of glycerine as a cross-linker systematically improves the properties of the polyurethanes. The polyols are characterized by DSC. The measured properties of polyurethanes include glass transition temperatures, tensile strengths, flexural moduli, and impact strengths.  相似文献   

12.
To reduce the proportion of food waste in municipal solid waste, a food waste biodegradation experiment with two biodegradation agents was conducted for seven weeks with 500 g of food waste added every day into each disposer. The agent containing four biodegradation bacterial strains showed higher degradation rates and matrix temperatures than that containing two. Furthermore, significant differences in the microbiological community structures of the matrixes were found not only between the two biodegradation systems but also among different stages in the same degradation system based on DGGE profiles. The F2 strain exhibited the highest DGGE optical density (OD) value among biodegradation systems and at all experimental stages, suggesting it was a dominant strain during food waste degradation.  相似文献   

13.
The biodegradability of lactic acid based poly(ester-urethanes) was studied using the headspace test method, which was performed at several elevated temperatures. The poly(ester-urethanes) were prepared using a straight two-step lactic acid polymerization process. The lactic acid is first condensation polymerized to a low molecular weight hydroxyl-terminated telechelic prepolymer and then the molecular weight is increased with a chain extender such as diisocyanate. In the biodegradation studies the effect of different stereostructures (different amounts of D-units in the polymer chain), the length of ester units, and the effect of crosslinking on the biodegradation rate were studied. The results indicate that poly(ester-urethanes) do not biodegrade at 25‡C, but at elevated temperatures they biodegrade well. The different stereostructures and crosslinking have a strong influence on the biodegradation rate. The length of ester units in the polymer chain also affects the biodegradation rate, but much less than crosslinking and stereostructure.  相似文献   

14.
Soybean oil (SBO) was dimerized and the crude dimer acid product reacted with 1,2-phenylene diamine at 210 ± 5 °C under inert atmosphere to obtain fatty polyamide (FPA). The FPA was used to modify a commercial alkyd resin by reacting a mixture of the alkyd resin with 5 wt% of FPA at 120 °C for 80 min under inert atmosphere. The FTIR spectrum of the FPA modified resin showed evidence of higher degree of H-bonding than was found for the unmodified alkyd. White gloss coatings of 15, 20, 25, and 30% solids were formulated from the modified and unmodified resins and examined for performance with respect to: leveling, sag resistance, drying time, pigment settling, skinning tendency and film hardness. Results showed that the unmodified alkyd coatings exhibited good leveling but poor sag resistance at all solid contents. In contrast, FPA modified alkyd coatings combined good leveling with high sag resistance indicating their thixotropic nature. A strong tendency to pigment settling was observed for unmodified alkyd coatings but was not observed in the FPA modified alkyd coatings. The modified alkyd coatings showed skinning while the unmodified alkyd coatings did not skin. A 30% solids coating formulation of the FPA modified resin showed shorter surface dry time but longer hard dry time than the unmodified alkyd resin coating.  相似文献   

15.
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2× after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property.  相似文献   

16.
The model polyurethane foam and model compact polyurethane material were prepared and then decomposed by means of natural oils. Castor oil and fish oil based polyol were used in this study. Optimal conditions for the polyurethane decomposition were found. Temperature 250 °C was necessary for efficient polyurethane decomposition by castor oil whereas 200 °C is sufficient in the case of fish oil based polyol. Prepared products have hydroxyl number in the range of 95–168 mg KOH g−1. During the polyurethane decomposition no cleavage of double bonds in the fatty acid chains of castor oil and fish oil based polyol was observed.  相似文献   

17.
The electrochemical oxidation (EO) of environmentally persistent perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) with a Magnéli phase Ti4O7 electrode was investigated in this study. After 3 hours (hr) of electrolysis, 96.0 percent of PFOA (10 milligrams per liter [mg/L] in 100 milliliters [mL] 100 millimolar [mM] Na2SO4 solution) was removed following pseudo first‐order kinetics (k = 0.0226 per minute [min]) with the degradation half‐life of 30.7 min. Under the same treatment conditions, PFOS (10 mg/L in 100 mL 100 mM Na2SO4 solution) removal reached 98.9 percent with a pseudo first‐order degradation rate constant of 0.0491/min and the half‐life of 14.1 min. Although, the degradation of PFOA was slower than PFOS, when subjected to EO treatment in separate solutions, PFOA appeared to degrade faster than PFOS when both are present in the same solution, indicating possible competition between PFOA and PFOS during Ti4O7 anode‐based EO treatment with PFOA having the competitive advantage. Moreover, the EO treatment was applied to degrade highly concentrated PFOA (100.5 mg/L) and PFOS (68.6 mg/L) in ion‐exchange resin regenerant (still bottom) with high organic carbon content (15,800 mg/L). After 17‐hr electrolysis, the total removal of PFOA and PFOS was 77.2 and 96.5 percent, respectively, and the fluoride concentration increased from 0.84 mg/L to 836 mg/L. Also, the dark brown color of the original solution gradually faded during EO treatment. In another test using still bottom samples with lower total organic carbon (9,880 mg/L), the PFOA (15.5 mg/L) and PFOS (25.5 mg/L) concentrations were reduced to levels below the limits of quantification after 16‐hr treatment. In addition, the performance of EO treatment using different batch reactor setups was compared in this study, including one‐sided (one anode:one cathode) and two‐sided (one anode:two cathodes) setups. The two‐sided reactor configuration significantly enhanced the degradation efficiency, likely due to the larger anode area available for reactions.  相似文献   

18.
The photodegradation of tetraphenyltin (TePT) contained in polychlorinated biphenyl (PCB)-based transformer oil simulants by ultraviolet (UV) irradiation in alkaline 2-propanol solutions was examined. In the absence of PCBs, the TePT level fell to below 1% of the initial concentration within 30 min. In the absence of both PCBs and an alkali, the concentrations of tri-, di-, and monophenyltins initially increased to a few milligrams per liter, and then reduced to below the detection limits within 90 min. The addition of an alkali to the reaction solution slightly accelerated the photodecomposition of TePT. The decomposition of other phenyltins (PTs) was also accelerated. When PCBs with concentrations of approximately 80 times the initial TePT concentration were added, only a small fraction of the TePT decomposed within 100 min. Moreover, the levels of PTs did not change during irradiation. TePT and other PTs did decompose when the level of PCBs was reduced to the same concentration as that of TePT; however, the decomposition rates were slower than those in the absence of PCBs. In the actual treatment process, TePT and other PTs in PCB-based transformer oil are decomposed by catalytic reduction, which is used after UV irradiation. Therefore, in the actual treatment of PCB-based transformer oil wastes, pollution due to PTs can be prevented.  相似文献   

19.
The Svalbard Shoreline Field Trials quantified the effectiveness of sediment relocation, mixing, bioremediation, bioremediation combined with mixing, and natural attenuation as options for the in situ treatment of oiled mixed-sediment (sand and pebble) shorelines. These treatments were applied to oiled plots located in the upper beach at three experimental sites, each with different sediment character and wave-energy exposure. Systematic monitoring was carried out over a 400-day period to quantify oil removal and to document changes in the physical character of the beach, oil penetration, oil loading, movements of oil to the subtidal environment, biodegradation, toxicity, and to validate oil-mineral aggregate formation.The results of the monitoring confirmed that sediment relocation significantly accelerated the rate of oil removal and reduced oil persistence where oil was stranded on the beach face above the level of normal wave activity. Where the stranded oil was in the zone of wave action, sediment relocation accelerated the short-term (weeks) rate of oil loss from the intertidal sediments.Oil removal rates on a beach treated by mechanical mixing or tilling were not significantly higher than those associated with natural recovery. However there is evidence that mixing/tilling may have enhanced microbial activity for a limited period by increasing the permeability of the sediment.Changes in the chemical composition of the oil demonstrated that biodegradation was significant in this arctic environment and a bioremediation treatment protocol based on nutrient enrichment effectively doubled the rate of biodegradation. However, on an operational scale, the success of this treatment strategy was limited as physical processes were more important in causing oil loss from the beaches than biodegradation, even where this oil loss was stimulated by the bioremediation protocols.  相似文献   

20.
Poly(3-hydroxybutyrate) (PHB) was evaluated in blends with poly(ethyleneglycol) (PEG) of different weight average molecular weight (Mw = 300, 600, 1,000 and 6,000). Irradiation of the PHB/PEG films was carried out to different levels of irradiation doses (5 and 10 kGy) and the effects were investigated talking into consideration: thermal properties by differential scanning calorimetry (DSC), perforation resistance, water vapor transmission rate and biodegradation in simulated soil. The addition of plasticizer alters thermal stability and crystallinity of the blends. The improvement in perforation resistance due to irradiation was regarded to be a result of the crosslinking effect. Also, biodegradation assays resulted in mass retention improvements with increases in PEG molar masses, PEG concentration and irradiation dose. The irradiation process was shown to hamper the biodegradation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号