首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper is aimed at assessing the long term behaviour of 90Sr migration from water to bottom sediments of Lake Uruskul, Southern Urals, Russia. The lake was contaminated following the nuclear accident at the Mayak nuclear complex in 1957 (the Kyshtym accident). Some transfer parameters relevant to the behaviour of 90Sr in the water-sediment system were evaluated: a) the radionuclide migration velocity from the water column to the bottom sediment, b) the radionuclide migration rate from bottom sediment to water, and c) the radionuclide migration rate from bottom sediment to deep sediment. The estimated values of the above parameters were 6.4 x 10(-1) m s(-1), 5.7 x 10(-10) s(-1) and 5.2 x 10(-10) s(-1), respectively. These values were compared with data obtained for some Italian lakes contaminated by 90Sr after the nuclear weapons tests fallout. The relatively low radionuclide migration from water to sediment of these lakes is reflected by the values of the ratio migration velocity/migration rate from sediment to water (4 m and 12 m) that are significantly lower than the corresponding value in the Russian lake (112 m). The peculiar hydrochemical conditions of Lake Uruskul (high pH, high mineralisation, etc.) are considered to be responsible for the high radionuclide migration from water to sediment.  相似文献   

2.
The present paper describes the application of a state-of-the-art model to two lakes in central Italy (Trasimeno and Monterosi) for the assessment of migration parameters of (137)Cs and (90)Sr (migration velocity to sediment, transfer rates from sediment to water and to bottom sediment). Applications of a compartment model and a model based on the diffusion equation to predict the behaviour of pollutants in water and through bottom sediment are presented and discussed. The application of the diffusion equation shows some difficulties of a general nature and typical of such a modelling approach. Moreover, there is no evidence of significant improvements of the model performances when the diffusion equation is applied. Very low levels of sedimentation rate of suspended matter in Lake Monterosi were evaluated by the quantitative assessment of radiocaesium migrating to bottom sediment. This suggests that, in this lake, the removal of radionuclide from the water column is mainly due to the turbulent mixing of bottom sediment causing radionuclide burial.  相似文献   

3.
Vertical soil characterization and migration of radionuclides were investigated at four radioactively contaminated sites on Kirtland Air Force Base (KAFB), New Mexico to determine the vertical downward migration of radionuclides in a semi-arid environment. The surface soils (0-15 cm) were intentionally contaminated with Brazilian sludge (containing (232)Thorium and other radionuclides) approximately 40 years ago, in order to simulate the conditions resulting from a nuclear weapons accident. Site grading consisted of manually raking or machine disking the sludge. The majority of the radioactivity was found in the top 15 cm of soil, with retention ranging from 69 to 88%. Two models, a compartment diffusion model and leach rate model, were evaluated to determine their capabilities and limitations in predicting radionuclide behavior. The migration rates of actinium were calculated with the diffusion compartment and the leach rate models for all sites, and ranged from 0.009 to 0.1 cm/yr increasing with depth. The migration rates calculated with the leach rate models were similar to those using the diffusion compartment model and did not increase with depth (0.045-0.076, 0.0 cm/yr). The research found that the physical and chemical properties governing transport processes of water and solutes in soil provide a valid radionuclide transport model. The evaluation also showed that the physical model has fewer limitations and may be more applicable to this environment.  相似文献   

4.
5.
This paper presents results on the calibration and validation of a model (Ventomod) for leaf to fruit transfer of (134)Cs, (85)Sr and (65)Zn in processing tomato plants after leaf contamination. Several models (e.g. FARMLAND) that deal specifically with the transfer of radionuclides to fruits are adaptations of models that were developed for agricultural crops such as leafy green vegetables. "Ventomod" represents a dynamic evaluation model exclusively built for the short-term behaviour of radionuclide depositions. It forecasts the level of radionuclide contamination in ripe processing tomato fruits following an accidental radionuclide release into the atmosphere. A validation of the developed model by data sets from an independent experiment showed that the model successfully reproduced the observed radionuclide distribution and dynamics in tomato fruits. The level of uncertainty was within the normal range of similar assessment models. For a more general use of this model further testing with independent data sets from experiments obtained under different environmental conditions and data from other horticulturally important plant species would be desirable.  相似文献   

6.
In most studies quantifying the migration parameters - apparent migration velocity and apparent dispersion coefficient - of radionuclides in the soil by model calculations, these parameters are determined for undisturbed soils. For soils disturbed by ploughing, however, no such data are available in the literature. Therefore, in the present study, the migration parameters of (137)Cs, (60)Co and (226)Ra were estimated for ploughed soils by means of a convection-dispersion model. The depth distributions of the radionuclides were determined in four lysimeters (area: 1m(2), depth of soil monolith: 0.75m) filled with artificially contaminated soils of different types in July 1990. The lysimeters were cropped with agricultural plants. The soil in each lysimeter was ploughed manually once a year until 1996 (plough depth 20cm). In July 1999, soil samples were collected from three pits in each lysimeter. The depth distributions of all radionuclides proved to be very similar in each soil pit. The spatial variability of the depth distributions of a given radionuclide within the lysimeters was about the same as their variability between the four lysimeters. Evaluation of the migration parameters revealed that the convective transport of the radionuclides was always rather small or even zero, while the dispersive transport caused a "melting" process of the initially sharp activity edge at the lower border of the Ap horizon. These results are explained by the high evapotranspiration (80-90% of the total precipitation plus irrigation) and the small amounts of seepage water during the observation period of 9 years.  相似文献   

7.
The sorption and release kinetics of 54Mn, 58Co, 59Fe, 109Cd, 110mAg and 134Cs by freshwater suspended particles were investigated to better identify the biogeochemical processes involved and to obtain suitable data for improving models describing radionuclide migration in freshwater streams. In order to observe any seasonal variability in the interaction of radionuclides with natural particles, experiments were performed both in winter and in summer during a phytoplanktonic bloom. Two kinetic models are compared in this paper: the "one-step reversible" model, based on the hypothesis that the transfer of radionuclides between water and suspended solids is governed by a reversible reaction, and the "two-successive-step reversible" model, which assumes two distinct types of sites or reactions on the solid phase. The "one-step reversible" model is generally unable to describe properly the exchange kinetics; this result shows that at least two processes are generally involved in radionuclide exchange between water and suspended particles. On the contrary, a model involving the existence of two successive reversible reactions properly simultes both the sorption and release kinetics. The determination of the kinetic coefficients allows quantitative assessment of the relative importance and kinetics of the processes. In particular, it has been shown that, except for Cs and Cd, major fractions of the radionuclides are associated at equilibrium with particulate sites involving strong interactions. The kinetics to reach this equilibrium depend on seasonal conditions, especially for Co and Mn: the transfer of Co and Mn to particulate sites involving strong interactions is much slower in winter. The distribution of the radionuclides between water and particulate sites involving weak interactions also shows seasonal variations for Co, Mn, Fe and Ag: the capacity to associate radionuclides is much higher in summer for Co and Mn, while the inverse tendency is observed for Fe and Ag. For Cs and Cd, no significant seasonal differences were observed.  相似文献   

8.
The present work describes a model for predicting the population dynamics of the main components (resources and consumers) of terrestrial ecosystems exposed to ionising radiation. The ecosystem is modelled by the Lotka–Volterra equations with consumer competition. Linear dose–response relationships without threshold are assumed to relate the values of the model parameters to the dose rates. The model accounts for the migration of consumers from areas characterised by different levels of radionuclide contamination. The criteria to select the model parameter values are motivated by accounting for the results of the empirical studies of past decades. Examples of predictions for long-term chronic exposure are reported and discussed.  相似文献   

9.
10.
This paper is aimed at presenting and discussing the methodologies implemented in state-of-the-art models for predicting the physical processes of radionuclide migration through the aquatic environment, including transport due to water currents, diffusion, settling and re-suspension. Models are briefly described, model parameter values reviewed and values recommended. The different modelling approaches are briefly classified and the advantages and disadvantages of the various model approaches and methodologies are assessed.  相似文献   

11.
The contents of 90Sr and 137Cs and the pattern of their redistribution in the soil and plant cover of floodplain ecosystems have been assessed. It is shown that the radionuclide distribution across the floodplain and along the river flow is determined by the formation of a barrier to their migration near the river channel, at which less mobile 137Cs accumulates. The soil and plant cover of the central floodplain are enriched with 90Sr. Differences in radionuclide migration in floodplain soils and their input into plants are determined by the relationship between the processes of their immobilization and migration with soil water.  相似文献   

12.
This second part of the study reports the development of a model to describe the vertical migration of the artificial radioisotope (137)Cs in the sediment column on the seabed of the Bay of Cadiz. The application of the model provides an overall picture of the process of sedimentation in the Inner Bay of Cadiz. The spatial distribution of the rate of sedimentation enables us to study the sources of sediments and the means by which the sediments have been transported. A method has been derived from the rate of sedimentation to perform the dating of the layers of sediment. The model describes the behaviour of (137)Cs in the area under study, taking into account the time of residence in the zones that are the source of accumulation, the origin of the sedimentary material, together with the diffusion of the radionuclide in the sediment of the seabed.  相似文献   

13.
The interactions of soil disaggregation with radionuclide erosion were studied under controlled conditions in the laboratory on samples from a loamy silty-sandy soil. The fate of 134Cs and 85Sr was monitored on soil aggregates and on small plots, with time resolution ranging from minutes to hours after contamination. Analytical experiments reproducing disaggregation mechanisms on aggregates showed that disaggregation controls both erosion and sorption. Compared to differential swelling, air explosion mobilized the most by producing finer particles and increasing five-fold sorption. For all the mechanisms studied, a significant part of the contamination was still unsorbed on the aggregates after an hour. Global experiments on contaminated sloping plots submitted to artificial rainfalls showed radionuclide erosion fluctuations and their origin. Wet radionuclide deposition increased short-term erosion by 50% compared to dry deposition. A developed soil crust when contaminated decreased radionuclide erosion by a factor 2 compared to other initial soil states. These erosion fluctuations were more significant for 134Cs than 85Sr, known to have better affinity to soil matrix. These findings confirm the role of disaggregation on radionuclide erosion. Our data support a conceptual model of radionuclide erosion at the small plot scale in two steps: (1) radionuclide non-equilibrium sorption on mobile particles, resulting from simultaneous sorption and disaggregation during wet deposition and (2) later radionuclide transport by runoff with suspended matter.  相似文献   

14.
The migration of a contaminant through the environment is the result of the transport by a variety of biotic and abiotic carriers which move according to different dispersion mechanisms. Consequently, the patterns of the distribution of a pollutant in the environment cannot be ever explained on the basis of a single migration process or assuming that the concentrations of contaminant in the different kinds of carriers quickly reach the equilibrium condition. The present work discusses two examples (wash-off from catchments and transport through soils of radionuclides) that clearly demonstrate the inadequacy of “single dispersion” models to predict these patterns. On the contrary, models based on multiple dispersion can successfully simulate the particular features of the above mentioned processes. It was demonstrated that the time behaviour of radionuclide migration rates from catchment of different rivers vary within small ranges as a consequence of multiple dispersion. This result can be useful for the development of generic predictive models.  相似文献   

15.
A mathematical model was constructed to simulate the processes of 137Cs migration in peat soils and its uptake by vegetation. Model parameters were assessed and the pattern of 137Cs distribution over soil profile was predicted in case of peat soils, which are typical of the Russian regions contaminated after the Chernobyl accident. The ecological half-life of 137Cs in the plant-root soil zone was calculated, and a long-term prognosis of the radionuclide uptake by plants was made.  相似文献   

16.
In this paper a compartment model of the highly vulnerable Arctic terrestrial food chain "lichen-reindeer-man" is outlined. Based upon an analysis of measured (137)Cs and (90)Sr contents in lichen and reindeer meat from 1961 up to 2001, site specific model parameters for two regions in north-western Arctic Russia and for Kautokeino municipality in Arctic Norway have been determined. The dynamics of radionuclide activity concentrations in the "lichen-reindeer-man" food chain for all areas was satisfactorily described by a double exponential function with short-term and long-term effective ecological half-lives between 1-2 and 10-12 years, respectively, for both (137)Cs and (90)Sr. Using parameter values derived from the model, life-time internal effective doses due to consumption of reindeer meat by reindeer-breeders after an assumed single pulse deposit of 1 kBq m(-2) of (137)Cs were estimated to be 11.4 mSv (Kola Peninsula), 5 mSv (Nenets Autonomous Area), and 2 mSv (Kautokeino, Norway). Differences in vulnerability to radiocaesium deposition were due to differences in transfer between lichen and reindeer and in diet between the three regions.  相似文献   

17.
Increasingly the burial of nuclear waste in deep underground repositories is being regarded as a safe long-term solution for disposal. However, to support this safety assessment models of the associated risks are required. An important component of these models is the upward migration of radionuclides from a contaminated water table into arable and pasture crops. A five-year experiment to investigate the processes which control these transfers has been undertaken at Imperial College. Selected data from this experiment were made available to participants of the BIOMOVS II programme in order to allow them to perform blind hydrological and radionuclide transport simulations. The results show the importance of correctly characterising the soil hydrology and indicate that model conceptualisations derived from surface contamination studies may not adequately capture the various processes which influence the upward movement of radionuclides in the vadose zone. These include not only the water movement, but also chemical and biological processes. Finally, the difficulty and importance of a priori parameter selection is highlighted.  相似文献   

18.
Migration of 137Cs and 90Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil–plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30–40 cm depth in 1997 and 1998. The total deposition of 137Cs ranged from 24 to 45 MBq/m2, and of 90Sr from 23 to 52 MBq/m2. It was shown that migration of 137Cs was fastest in sandy loam, and of 90Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137Cs and 90Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137Cs and 90Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137Cs and 90Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils.  相似文献   

19.
Many long-lived radionuclides are present in groundwater at the Nevada Test Site (NTS) as a result of 828 underground nuclear weapons tests conducted between 1951 and 1992. In conjunction with a comprehensive geochemical review of radionuclides ((3)H, (14)C, (36)Cl, (99)Tc and (129)I) that are presumably mobile in the subsurface, we synthesized a body of radionuclide activity data measured from groundwater samples collected at 18 monitoring wells, to qualitatively assess their migration at the NTS over distances of hundreds of meters and over timescales of decades. Tritium and (36)Cl showed little evidence of retardation, while the transport of (14)C may have been retarded by its isotopic exchange with carbonate minerals in the aquifer. Observed local reducing conditions (either natural or test-induced) will impact the mobility of certain redox-sensitive radionuclides (especially (99)Tc) that were otherwise soluble and readily transported under oxidizing conditions. Conversely, strongly oxidizing conditions may impact the mobility of (129)I which is mobile under reducing conditions. The effect of iodine speciation on its transport deserves further attention. Indication of delayed transport of some "mobile" radionuclides (especially (99)Tc) in the groundwater at the NTS suggested the importance of redox conditions of the natural system in controlling the fate and transport of radionuclides, which has implications in the enhanced performance of the potential Yucca Mountain repository, located adjacent to the NTS, to store high-level nuclear wastes as well as management of radionuclide contamination in legacy nuclear operations facilities.  相似文献   

20.
This paper presents a review of available models for radionuclide transfer to fruit with particular emphasis on the model types and the purpose for which they were developed. It is clear that the model structures that have been developed range from the simple to the complex and that the underlying data on which they are based is incomplete. The work programme of the BIOMASS Theme 3 Fruits Working Group includes model inter-comparison and model validation studies that will give an indication of the performance of the different model types discussed here. The models included in these comparative studies include several new and as yet unpublished models. In the case of fruit, there is an urgent need for data on changing radionuclide distribution in plant organs with time to increase confidence in current models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号