首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4?C7 wider than that for raw L. edodes (pH 6?C7). In the presence of Pb2+ concentration varying from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single-metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin-Radushkevich models. The Cd2+ adsorption capacities (q m) in single-metal solution were 6.448 mg·L?1 and 2.832 mg·L?1 for immobilized and raw L. edodes, respectively. The q m of immobilized L. edodes were 1.850 mg Cd·g?1 in Cd2+ + Pb2+ solution and 3.961 mg Cd·g?1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was -OH, -NH, -CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA-SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.  相似文献   

2.
Carbonate shells have an astonishing ability in the removal of Cd2+ in a short time period with emphasis on being a low cost adsorbent. In the present study, the sorption capacity of carbonate shells was studied for Cd2+ in batch experiments. The influence of different carbonate shell sizes and physico-chemical factors were evaluated and the results were analyzed for its correlation matrices by using Predictive Analytics Software (PASW). The mineralogy state of aqueous solution regarding the saturation index was simulated using PHREEQC to identify the Cd2+ uptake mechanism. The Cd uptake rates were calculated as well as Ca2+, HCO 3 ? concentration, pH, ambient humidity and temperature were measured. Cd2+ removal of 91.52% was achieved after 5 h adsorption. The adsorption efficiencies were significantly influenced by pH as they increased with the increase of pH from acidic solution (5.50±0.02) to slightly alkaline (7.60±0.05). In addition, the mineralogy state of aqueous solution calculated from PHREEQC confirmed that the increment of Ca2+ and HCO 3 ? concentrations in solution was attributed to the dissolution of carbonate shells. Moreover, the ion exchange adsorption mechanism of Cd2+ toward Ca2+ was identified as the process involved in Cd2+ uptake.  相似文献   

3.
Sorption by humic acids is known to modify the bioavailability and toxicity of metals in soils and aquatic systems. The sorption of cadmium(II) and copper(II) to two soil humic acids was measured at pH 6.0 using ion-selective electrode potentiometric titration at different temperatures. Sorption reactions were studied with all components in aqueous solution, or with the humates in suspension. Adsorption reactions were described using a multiple site-binding model, and a model assuming a continuous log-normal distribution of adsorption constants. Adsorption of Cu2+ was more favourable than adsorption of Cd2+. The log-normal distribution model provided the closest fit to observations and allowed parameterisation of adsorption data using a mean adsorption constant (log K μ). Sorption of Cd2+ to dissolved humic acids increased slightly in extent and sorption affinity with increasing temperature, but the effect was small (log K μ 2.96–3.15). A slightly greater temperature effect occurred for sorption of Cd2+ to solid-phase humic acids (log K μ 1.30–2.08). Sorption of copper(II) to both aqueous- and colloidal-phase humates showed more pronounced temperature dependence, with extent of sorption, and sorption affinity, increasing with increasing temperature (log K μ 3.4–4.9 in solution and 1.4–4.5 in suspension). The weaker adsorption of Cd2+ than Cu2+, and smaller temperature effects for dissolved humates than suspended humates, suggested that the observed temperature effects had a kinetic, rather than thermodynamic, origin. For any metal-to-ligand ratio, free metal ion concentration, and by inference metal bioavailability, decreased with increasing temperature. The consistency of the data with kinetic rather than thermodynamic control of metal bioavailability suggests that equilibrium modelling approaches to estimating bioavailability may be insufficient.  相似文献   

4.
Biosorption of Zn2+ from aqueous solutions by biomass of Agaricus bisporus was investigated. The removal rates of Zn2+ by A. bisporus under different parameters (e.g., solution pH, bio-sorbent dosage and initial Zn2+ concentration) were studied. The inhibition of A. bisporus’s biosorption by anionic ligands EDTA (Ethylene Diamine Tetraacetic Acid), acetate and citrate) implied that EDTA and citrate might be used as eluting reagents. Regular and simultaneous solution pH change and light metal ions release after biosorption indicated that an ion exchange mechanism was involved. From FT-IR (Fourier Transform Infrared) spectroscopy, the main functional groups participated in biosorption were found. Biosorption of Zn2+ by A. bisporus could be well described by the Freundlich and Langmuir models. In conclusion, the biomass of A. bisporus showed high potential for the treatment of wastewater containing Zn2+.  相似文献   

5.
Naturally occurring diatomaceous earth was modified by alkaline pretreatment, and its effectiveness for Cd2+ removal from contaminated water was investigated. Batch experiments were carried out to determine Cd2+ adsorption capacity and the efficiency of the sorption process under different experimental conditions. Experimental data showed good fitting to Langmuir and Freundlich isotherms models. The Cd2+ maximum adsorption capacity was 0.058 mmol g−1 for raw diatomite and increased to 0.195 mmol g−1 for alkaline-pretreated diatomite with efficiency higher than 96% (diatomite dose 2.5 g L−1, pH 6). Adsorption of Cd2+ to alkaline-pretreated diatomite increased as the temperature increased. Thermodynamic parameters were calculated to evaluate the feasibility of the adsorption process at different temperatures. The adsorption process was spontaneous and endothermic. The interaction between Cd2+ ions and diatomite surface was weak enough to be considered as physical sorption, confirmed by the low value of activation energy.  相似文献   

6.
Removal of Cu2+, Cd2+, Pb2+, and Zn2+ from aqueous solutions by activated carbon prepared from stems and seed hulls of Cicer arietinum, an agricultural solid waste, has been studied. The influence of various parameters, such as pH, contact time, adsorbent dose, and initial concentration of metal ions on removal was evaluated. The activated carbon was characterized by FT-IR spectroscopy, X-ray diffraction, and elemental analysis. Sorption isotherms were studied using Langmuir and Freundlich isotherm models. All experimental sorption data were fitted to the sorption models using nonlinear least-squares regression. The maximum adsorption capacity values for activated carbon prepared from Cicer arietinum waste for metal ions were 18 mg g?1 (Cu2+), 18 mg g?1 (Cd2+), 20 mg g?1 (Pb2+), and 20 mg g?1 (Zn2+), respectively. The Freundlich isotherm model fit was best, followed by the pseudo-second-order kinetic model. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ions and for regeneration of the adsorbent.  相似文献   

7.
Several aquatic environments have been contaminated with heavy metals dumped via industrial effluents. Numerous studies have been published regarding the removal of single metals from aqueous solutions by microalgal biomass. However, such studies do not reflect the actual problem associated with industrial effluents because usually more than one metal species is present. Here we studied the biosorption capacity of Zn2+ and Cd2+ as single- and binary-metal systems by two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, isolated from a polluted site in Northern Portugal. For each metal independently, D. pleiomorphus showed a higher metal sorption capacity than S. obliquus, at concentrations ranging from 60 to 300 mg/l (except 150 mgCd/l). Maximum amounts of Zn2+ and Cd2+ removed were 22.3 and 60.8 mg/g by S. obliquus, and 83.1 and 58.6 mg/g by D. pleiomorphus. In binary-metal solutions, S. obliquus was in general able to remove Zn2+ to higher extents than Cd2+, whereas the opposite was observed with D. pleiomorphus. The simultaneous uptake of Zn2+ and Cd2+ by both microalgae was considerably lower than that of their single-metal counterparts, at equivalent concentrations. Although microalgal uptake from binary-metal solutions was lower than from single-metal ones, the wild microalgae selected were able to efficiently take up mixtures of Zn2+ and Cd2+ up to 300 mg/l of both metals—thus materializing a promising bioremediation vector for polluted waters.  相似文献   

8.
Powdered maize tassels were studied and found to exhibit metal sorption properties due to the availability of functional groups. The tassels have a high amount of soluble organic substances that can dissolve in aqueous media, contributing to secondary pollution during a water treatment process. A chelating agent was chemically attached on the maize tassels with a view to increase the sorption capacity, minimize leaching, and enhance the tassels’ stability. Thermogravimetric analysis confirmed that modification improved their thermal stability to withstand temperatures above 600°C as well as reduced the “secondary pollution”. The modified sorbent was employed for the sorption of lead, copper, and cadmium ions in both the model solutions and the real samples. The contact time and pH were optimized after which Langmuir and Freundlich isotherms were applied to the data. The sorption capacities for Cu2+, Cd2+, and Pb2+ improved from 3.4, 0.8, and 1.7?g?kg?1, respectively, to 6.3, 2.6, and 2.6?g?kg?1 in the same order. The sorbent was shown to remove up to 95% of the metals in less than 10 min. This study has a potential application for the remediation of polluted waters.  相似文献   

9.
Effects of heavy metals on lysosomes were studied in living cells from the mussel (Mytilus galloprovincialis Lam.). Haemolymph cells were obtained from the mussel adductor muscle, stained with neutral red (NR), and analysed by digital imaging to evaluate NR retention times within lysosomes. Exposure to Hg2+, Cd2+ and Cu2+ induced a reduction of NR retention time, indicating lysosomal membrane destabilisation. The intensity of these effects was correlated with the metal affinity for sulfhydryls. In contrast, Zn2+ showed no effect on lysosomes. Moreover, 200 μM Zn2+ protected lysosomes against the effects of Cd2+ and Cu2+, but not against Hg2+. Cell loading with the fluorescent pH probe Lyso Sensor followed by digital imaging showed a rise of lysosomal pH induced by Cd2+ and Hg2+, while Zn2+ prevented the effect of Cd2+ and also partially that of Hg2+. The different protective effect of Zn2+ against Hg2+ suggests a dual action of Hg2+ on lysosomes, possibly involving both membrane destabilisation and proton pump inhibition. Cell exposure to 17 β-estradiol also caused a reduction of NR retention time, which was synergistic to that of Hg2+. This suggests a common pathway between metals and hormone, possibly involving Ca2+ signaling. Received: 17 November 1999 / Accepted: 29 June 2000  相似文献   

10.
Biochar, is a low-cost material that can be used as an alternative adsorbent for the removal of heavy metals. In this study, a low-cost and efficient adsorbent synthesised from Jatropha curcas seeds was used for the uptake of Cu2+ from aqueous solutions. The as-prepared adsorbent was characterised by scanning electron microscopy and Brunauer–Emmett–Teller analysis post calcination at 500 °C, its BET surface area and total pore volume were 39.62?m2?g?1 and 0.049?m3?g?1, respectively. Subsequently, the effects of initial pH of the solution, contact time, and adsorbent material dosage on the adsorption of Cu2+ by the prepared adsorbent were investigated. The as-prepared adsorbent exhibited a high performance, with a maximum adsorption amount of 32.895?mg?g?1 for Cu2+ at pH 5.0 and 25 °C, owing to the presence of ?OH, C=O, C–O, Si-O-Si, and O-Si-O on its surface. The predominant Cu2+ adsorption mechanism was assumed to be ion exchange. Notably, the Cu2+ adsorption could attain equilibrium within 90?min. In addition, the fact that the Langmuir model was a better fit than the Freundlich model for the isotherm data of Cu2+ adsorption by the as-prepared adsorbent suggested that the adsorption of Cu2+ was a monolayer adsorption process.  相似文献   

11.
利用海藻酸钙为载体包埋固定化硫酸盐还原菌(SRB)混合菌群,研究了固定化微生物吸附重金属镍离子的动力学特性.结果表明:固定化混合SRB菌群对Ni2 具有良好的吸附性能,最大吸附容量qm高达931.9mg(Ni2 )/g(SRB)颗粒,是一种颇具应用前景的生物吸附剂.固定化SRB吸附Ni2 的动力学过程可以用准二次动力学方程描述,整个吸附过程可以明显地分为两个阶段,即物理化学吸附阶段和生物沉淀阶段.扩散动力学研究表明,固定化颗粒的内扩散并非是唯一控制吸附速率的机制,整个吸附过程涉及到多种吸附机制.图4表3参14  相似文献   

12.
The adsorptive characteristics of biochar produced from garden green waste (S-char) and a mixture of food waste and garden green waste (FS-char) were investigated. Adsorption of Cu2+, Zn2+, and Mn2+ onto the two biochars reached equilibrium within 48 hours. The metal adsorption was effectively described by the pseudo-second-order kinetic and Freundlich isotherm models which suggest heterogeneous chemisorption. The initial solution pH influenced adsorption of Zn2+ and Mn2+ but not of Cu2+. Simulation via a surface complexation model showed that the fraction of XOCu+ adsorbed onto biochar was increased with increasing pH until it reached the adsorption maximum at pH 8.5, while the endpoint for the maximum of XOMn+ was higher than pH 12.  相似文献   

13.
In this work, a new procedure for the enrichment of the trace amount of Cu2+, Ni2+, Co2+, Pb2+, Fe2+, and Zn2+ ions based on the utilization of multiwalled carbon nanotubes (MWCNT) modified with 2-(2-hydroxy-5-nitrophenyl)-4,5-diphenyl imidazole as chelating agent prior to their determination by flame atomic absorption spectrometry has been described. The influence of effective parameters including pH, amount of ligand and MWCNT, composition of eluent, and coexisting ions on recoveries of understudy metal ions was examined. At the optimum pH of 5.0, all metal ions were quantitatively sorbed onto the proposed solid phase and completely desorbed with 8?mL of 5.0?mol?L?1 HNO3. The detection limit of Cu2+, Co2+, Ni2+, Pb2+, Fe2+, and Zn2+ ions was 1.7, 2.4, 2.3, 2.9, 2.8, and 1.4?µg?L?1, while the preconcentration factor was 63 for Cu2+ and 94 for the other metal ions and relative standard deviations between 1.8 less than 3.0%. The proposed procedure was applied for the analysis of various samples.  相似文献   

14.
铜离子对中国花鲈幼鱼的毒性研究   总被引:3,自引:0,他引:3  
为给中国花鲈(Lateolabrax maculatus)养殖提供污染生物学的理论数据,研究了中国花鲈幼鱼的铜离子中毒症状和半致死浓度(LC50);检测了幼鱼肝脏的谷胱甘肽(GSH)和丙二醛(MDA)含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷丙转氨酶(GPT)和谷草转氨酶(GOT)活力;分析了铜离子胁迫对...  相似文献   

15.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total?=?10–100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities ν i and equilibrium constants K i for metal binding at specific biomass sites i?=?A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that ν i is a stoichiometric parameter that is independent of the magnitude of K i for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   

16.
Cd~(2+)对BY-2细胞的毒性机制及水杨酸的缓解作用   总被引:1,自引:0,他引:1  
镉对生态环境的危害表现出对植物这种定生生物的毒害性。以绿色荧光蛋白(GFP)膜泡标记的烟草BY-2细胞为实验材料,分别在荧光显微镜和激光共聚焦显微镜下观察了Cd2+对植物细胞的毒害作用和机制,并研究了水杨酸(SA)处理对Cd2+植物细胞毒害的缓解作用。研究发现激光共聚焦显微镜可以观察到Cd2+处理3 h后细胞荧光亮度减弱,6 h时细胞皱缩和液泡缩小,9 h细胞大多死亡。在Cd2+胁迫同时加入SA,可显著提高细胞成活时间,荧光亮度增强、液泡化程度加大,同时能够观察到荧光标记的细胞膜包裹Cd2+的高荧光颗粒。SA处理的细胞还通过高度液泡化来缓解重金属Cd2+的毒性。结果表明具有生物活性的SA诱导细胞的液泡化,并通过膜成分对重金属的包裹和结合进一步降低了重金属对植物细胞的毒害。因此水杨酸缓解重金属对植物细胞的毒性,是通过诱导细胞的液泡化和膜对重金属离子的包裹束缚而实现的。  相似文献   

17.
A total of 35 bacterial strains were isolated from the industrially polluted Cuddalore coast, on the southeast coast of India. Of these, 17 strains were cadmium resistant and the remainder were sensitive. Six strains (C-1, C-8, C-10, C-12, C-14 and N-1) were selected based on high levels of cadmium tolerance (>150 mg L?1) and were termed highly cadmium-resistant bacteria (HCRB). These HCRB were identified on the basis of morphological, biochemical and partial sequencing of their 16S rRNA genes. The antibiotic-susceptibility patterns and minimum inhibitory concentrations (MIC) of different metals (Cu2+, Pb2+ and Zn2+) against each HCRB were determined. Among the isolates, C-14 showed high degrees of metal and antibiotic resistance compared with other HCRB. Growth rates of HCRB at two different Cd2+ concentrations (50 and 100 mg L?1) and under different metal conditions (Cd2+, Cu2+ and Pb2+) were also investigated. HCRB growth rates were lower in the metal-treated condition than in the untreated condition. Isolates C-14 and N-1 removed>80% of Cd2+ from cadmium-treated broth. However, isolate C-14 removed 92.3% of Cd2+ compared with 86.5% for isolate N-1. Bacteria showing residual growth rates under metal stress conditions might be useful in metal removal applications under growing conditions.  相似文献   

18.
A method for the solid phase extraction of trace metals, namely Co, Cu, Pb, Ni and Zn, from environmental and biological samples using column Amberlite XAD-7 loaded with 2-hydroxy-propiophenone-4-phenyl-3-thiosemicarbazone (HPPPTSC) and determination by inductively coupled spectrometry (ICP–AES) has been developed. The reagent has the capacity to form chelate complexes with the metals because of three binding sites in the reagent molecule. The optimum experimental conditions for the quantitative sorption of five metals, pH, effect of flow rate, concentration of eluent, sorption capacity and the effect of diverse ions on the preconcentration of analytes have been investigated. The sorption capacity of the resin has 83, 127, 35, 88 and 85?µmol?g?1 for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+, respectively. The preconcentration factors for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ were 100, 110, 120, 140 and 150, respectively. The accuracy of the proposed procedure was evaluated by standard reference materials. The achieved results were in good agreement with certified values. The proposed method was applied for the determination of trace metals in river water and plant leaves.  相似文献   

19.
This study focused on the biosorption of trivalent chromium onto mycelial bacterium (Streptomyces rimosus) biomass from effluent of tannery. The biomass was prepared by treatment with alkali. Fourier transforms-infra red analysis of the mycelial bacterial revealed the presence of carboxyl groups as possible binding sites. Experimental parameters affecting biosorption processes such as pH contact time were studied. Langmuir, Freundlich, and Temkin models were applied to describe the biosorption isotherms. The Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of S. rimosus biomass for trivalent chromium was found to be 83 mg g?1 at pH 4.8 and 3 g L?1 biomass dosage, 300 min equilibrium time and 20°C. Kinetic evaluation of experimental data showed that the biosorption processes of trivalent chromium followed pseudo-second-order kinetics well.  相似文献   

20.
A sensitive and efficient method for preconcentration of trace amounts of some metal ions such as Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, Cr3+, and Fe3+ ions based on modification of sodium-dodecyl-sulphate (SDS) coated alumina with 1-(6-(-(2-hydroxynaphthalen-1-yl) methyleneamino) hexylimino) methyl) naphthalen-2-ol (HNMAHN) is reported. The method is based on the uptake of these ions following their chelation with HNMAHN and their recovery using a suitable eluent. The influence of parameters such as pH, concentration of ligand and amount of coated alumina, SDS concentration, eluent (type and concentrations), and elution volume on metal ion recoveries are investigated. The preconcentration factor is 150 (10?mL elution volume) for a 1500?mL sample volume. The method has been successfully applied for extraction and determination of these ions content in some real samples. Extraction efficiency is generally >95% with low relative standard deviations between 1.8% and 2.4 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号