首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price.In the present study waste frying oils collected from several McDonald’s restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH3ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards.  相似文献   

2.
Biodiesel from waste cooking oil (WCO) and soybean oil (SO) mixture was produced by changing the alkali catalyst (NaOH) content and the WCO to SO ratio in the feedstock. All the prepared biodiesel samples satisfied the standard requirement in terms of free glycerol, density, and acid value. The minimum catalyst content and the highest WCO composition to get biodiesel from the WCO/SO mixture feedstock without ruining the biodiesel properties were 1.0 and 60 wt %, respectively. This conclusion implies that the waste cooking oil mixture, which contains 40 wt % fresh soybean oil, could be treated like the fresh soybean oil to produce biodiesel, and that this behavior would be helpful to reduce the biodiesel production cost when waste cooking oil used as feedstock. The unsaturated methyl esters such as linoleic, and oleic acid were dominant (almost 80 % w/w) in the fresh soybean oil. However the saturated methyl ester was increased due to the double bond breaking during the frying process. These results may deteriorate the biodiesel quality by changing the methyl ester composition.  相似文献   

3.
In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards.  相似文献   

4.
Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 °C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.  相似文献   

5.
In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH.The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated.  相似文献   

6.
An acid–base-catalyst-based two-step biodiesel production experiment from soybean waste cooking oil was carried out to identify which parameter is the most influential among the experimental parameters by using the Taguchi method. Heterogeneous catalysts were used to avoid a water-consuming homogeneous catalyst removal process. Ferric sulfate and calcium oxide were used as acid and base catalysts, respectively, for the heterogeneous reaction. Reaction time and methanol-to-triglyceride mole ratio were significant factors. The optimum parameters for step 1 (acid esterification) were 4 h of reaction time, 4 wt. % of ferric sulfate amount, a 16:1 methanol to triglyceride mole ratio, and 400 rpm of mixing speed, respectively. For the transesterification step, the most influential factor was reaction time, and CaO amount was significant as well. On the other hand, the mole ratio of methanol and oil was relatively less significant. Optimum parameters were 3 h of reaction time, 2 wt. % of CaO, and a 12:1 methanol to triglyceride mole ratio with mixing speed at 400 rpm in this experimental range. Under the optimum conditions, waste cooking oil with 5.27 mg KOH/g of acid value was converted into crude biodiesel by a two-step process with fatty acid methyl ester content reaching 89.8 % without any further post-purification.  相似文献   

7.
Biodiesel is commonly produced from vegetable oils, mostly edible and more expensive than petroleum diesel. By considering the cost of the conversion processes, cheap feedstock such as triglycerides and fatty acids (FA) extracted from early stage of food waste liquefaction has become a better choice than vegetable oils, as it could provide high yield of biodiesel without any compromise to food supply and other resources. In this study, FA from early stage of food waste liquefaction was extracted and tested for use as feedstock for biodiesel synthesis. The raw material was not pretreated but extraction was done by dry and wet methods. It was found that wet method could minimized the lost of short and medium-chained FA as well as reducing the number of steps required, thus, yielding higher amount of FA as feedstock. The effects of mixing, methanol ratio, reaction time and catalyst content were investigated for the acid-catalyzed esterification. The maximum biodiesel conversion obtained was 97.4 %.  相似文献   

8.
Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the commercial production of biodiesel from agricultural biomass.  相似文献   

9.
The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors.  相似文献   

10.
用混合二元酸制备混合酸二甲酯   总被引:1,自引:0,他引:1  
以工业副产物混合二元酸(DBA)和甲醇为原料,用自制PW12/SiO2作催化剂制备混合酸二甲酯(DME),确定了最佳制备条件:甲醇与DBA摩尔比为3.5,PW12/SiO2加入量(PW12/SiO2中PW12占DBA的质量分数)为2%,反应时间为4.5h,100gDBA中甲苯加入量为50mL。在此最佳条件下,DME收率为84.7%,所得DME为无色澄清液体,其中丁二酸二甲酯的质量分数为11.03%,戊二酸二甲酯的质量分数为13.88%,己二酸二甲酯的质量分数为73.79%。PW12/SiO2具有较好的稳定性和一定的重复使用性,PW12/SiO2重复使用5次时的DME收率仍大于70%。  相似文献   

11.
This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.  相似文献   

12.
Oxidation of methanol over V2O5 catalysts supported on anatase TiO2 that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst were also studied. The process provides an alternative low temperature reaction pathway for reducing emissions of hazardous air pollutant (HAPs) such as methanol and total reduced sulfur compounds (TRS) from pulp and paper mills. The bulk and surface composition of the catalysts were determined by XRD and SEM-EDAX, respectively. The X-ray diffraction patterns of the vanadia–titania catalysts showed mainly the anatase phase of TiO2. Temperature programmed desorption of methanol from the different catalyst showed that the α and β peaks differ significantly with V content and addition of Mg. The combination of gas phase and surface reactions on the V/TiO2 catalysts reduced the amount of ozone required for high degradation of methanol to mainly CO x with small quantities of methyl formate. In the absence of ozone the catalysts showed very low activity. It is hypothesized that the ozone is directly influencing the V4+ and V5+ redox cycle of the catalyst. Oxidation of methanol is influenced by the operation variables and catalyst properties. The results of this study revealed that the V content has significant influence on the catalyst activity, and the optimum vanadia loading of about 6 wt%. Higher turnover frequencies were observed over sol-gel catalysts than with catalysts prepared by the impregnation method.  相似文献   

13.
萃取法回收钛白水解废酸中的硫酸   总被引:4,自引:2,他引:4  
李潜  朱红力 《化工环保》2003,23(4):225-228
提出了以三异辛胺作萃取剂、H2O作反萃取剂从钛白水解废酸中萃取回收硫酸的新工艺。考察了萃取剂浓度、相调节剂浓度、相比及温度对萃取和反萃取的影响,并进行了模拟试验。在以40%三异辛胺、25%仲辛醇和35%航空煤油(均为质量分数)为萃取有机相,相比为2,以H2O为反萃剂,相比为1.5的条件下,质量浓度为146.02g/L的废酸经8级萃取和6级反萃取,硫酸回收率达到91.81%,产品酸质量浓度达119.73g/L。  相似文献   

14.
Catalytic pyrolysis of car tire waste using expanded perlite   总被引:1,自引:0,他引:1  
In this study, the non-catalytic and catalytic pyrolysis experiments were conducted on the sample of tire waste using expanded perlite as an additive material to determine especially the effect of temperature and catalyst-to-tire ratio on the products yields and the compositions and qualities of pyrolytic oils (NCPO and CPO). Non-catalytic studies, which were carried out under the certain conditions (a nitrogen flow of 100 mL/min and a heating rate of 10 °C/min), showed that the highest yield of pyrolytic oil (NCPO) was 60.02 wt.% at 425 °C. Then, the catalytic pyrolysis studies were carried out at catalyst-to-tire ratio range of 0.05-0.25 and the highest catalytic pyrolytic oil (CPO) yield was 65.11 wt.% at the ratio of 0.10 with the yield increase of 8.48 wt.% compared with the non-catalytic pyrolysis. Lastly, the pyrolytic oils were characterized with applying a various techniques such as elemental analyses and various chromatographic and spectroscopic techniques (GC-MS, 1H NMR, FT-IR, etc.). The characterization results revealed that the pyrolytic oils which were complex mixtures of C5-C15 organic compounds (predominantly aromatic compounds) and also the CPO compared to the NCPO was more similar to conventional fuels in view of the certain fuel properties.  相似文献   

15.
采用乳状液膜法分离提取废汞触媒浸出液中的Hg~(2+)。考察了影响乳状液膜体系分离富集汞的主要因素,并对分离提取后的乳液相进行了破乳研究。分离提取实验结果表明:乳状液膜体系的最佳配方为流动载体磷酸三丁酯体积分数10%、表面活性剂失水山梨糖醇脂肪酸酯体积分数4%、膜溶剂磺化煤油体积分数86%、内水相HCl溶液浓度0.10mol/L、油相与内水相的体积比1∶1;在乳状液与外水相的体积比为1∶10的条件下Hg~(2+)提取率达78.50%。破乳实验结果表明:加热破乳、离心破乳、加热离心联合破乳3种方法的破乳率分别为29.0%,54.0%,85.7%;采用加热离心联合法破乳后,Hg~(2+)富集倍数达8.5。  相似文献   

16.
Fuel production from plastics is a promising way to reduce landfilling rates while obtaining valuable products. The usage of Ni-supported hierarchical Beta zeolite (h-Beta) for the hydroreforming of the oils coming from LDPE thermal cracking has proved to produce high selectivities to gasoline and diesel fuels (>80%). In the present work, the effect of the Ni loading on Ni/h-Beta is investigated in the hydroreforming of the oils form LDPE thermal cracking. h-Beta samples were impregnated with Ni nitrate, calcined and reduced in H2 up to 550 °C to achieve different Ni contents: 1.5%, 4%, 7% and 10%. Larger and more easily reducible metal particles were obtained on Ni 7%/h-Beta and Ni 10%/h-Beta. Hydroreforming tests were carried out in autoclave reactor at 310 °C, under 20 bar H2, for 45 min. Ni content progressively increased the amount of gases at the expenses of diesel fractions, while gasoline remained approximately constant about 52–54%. Maximum selectivity to automotive fuels (~81%) was obtained with Ni 7%/h-Beta. Ni loading also enhanced olefins saturation up to Ni 7%/h-Beta. High cetane indices (71–86) and octane numbers (89–91) were obtained over all the catalysts. Regarding the different studied Ni contents, Ni 7%/h-Beta constitutes a rather promising catalyst for obtaining high quality fuels from LDPE thermal cracking oils.  相似文献   

17.
马宵颖  赵毅 《化工环保》2018,38(4):425-430
采用有机合成法制备了类过氧化物酶(Fe-TAML)催化剂。利用制备的Fe-TAML催化H_2O_2脱除烟气中的Hg~0,考察了影响Hg~0去除率的多种因素。实验结果表明:在Fe-TAML催化剂用量为0.08 g/L、H_2O_2浓度为0.035mol/L、溶液pH为9、反应温度为40℃、烟气中Hg~0质量浓度为101.00μg/m3的条件下,反应30 min的平均Hg~0去除率可达71.50%。以甲醇作为HO·的淬灭剂开展了淬灭实验,结合产物分析,推测了Hg~0的去除机理。  相似文献   

18.
Oil extraction from the oil-bearing biomass and waste materials has been considered as one of the biggest challenges in the biodiesel production process because it has been considered as the most energy- and cost-demanding step. This work provides a promising approach for the direct transformation without oil extraction from calcined montmorillonite clay (CMC) and microalgae by means of the non-catalytic thermo-chemical process in conjunction with the real continuous flow system. The introduced method showed the high tolerance of water, impurities, and free fatty acids (FFAs), which enable the combination of the esterification of FFAs and transesterification of triglycerides into a single step without the lipid extraction. For example, this study showed that the maximum achievable yield of biodiesel via the introduced methodology was 97 ± 0.5 % at the temperature regime of 380–480 °C and this biodiesel yield was enhanced in the presence of CO2. Thus, the introduced methodology for producing biodiesel could be an alternative way of the methanol liquefaction and transesterification under supercritical conditions.  相似文献   

19.
Shrimp waste, which is produced in large quantities in the Indian seafood processing industries, is one of the important sources of natural carotenoids. Studies were carried out to assess the extractability of shrimp waste carotenoids in different organic solvents and solvent mixtures and to optimize the extraction conditions for maximum yield. A 50:50 mixture of isopropyl alcohol and hexane gave the highest (43.9 microg/g waste) carotenoid extraction yield compared to acetone, methanol, ethanol, isopropyl alcohol, ethyl acetate, ethyl methyl ketone, petroleum ether, and hexane individually and to a mixture of acetone and hexane. Extraction conditions such as percentage of hexane in the solvent mixture of isopropyl alcohol and hexane, ratio of solvent to waste and number of extractions was optimized using a statistically designed experiment. The optimized conditions for maximum yield of carotenoids were 60% hexane in solvent mixture, solvent mixture to waste ratio of 5:1 in each extraction and three extractions. A regression equation for predicting the carotenoid yield as a function of three processing variable (hexane % in solvent mixture, solvent-to-waste ratio and number of extractions) was derived by statistical analysis, and a model with predictive ability of 0.98 was obtained.  相似文献   

20.
A bibliometric analysis based on the Science Citation Index Expanded (SCI-EXPANDED) from the Web of Science was carried out to provide insights into research activities and tendencies of the global biodiesel from 1991 to 2015. The document type and language, characteristics of publication outputs, Web of Science categories, journals, countries, institutions, author keyword and most cited articles were emphasized. The results indicated that annual output of the related scientific articles increased steadily. The top six categories focus on different aspects of biodiesel research. Bioresource Technology and Fuel were the two most frequent journals in the field of biodiesel research. The USA took a leading position and had the highest h-index (108) out of 122 countries/territories, followed by China and Brazil. Finally, author keywords and most cited articles were analyzed, indicating that microalgae, Jatropha curcas, vegetable oil and waste cooking oil are the most general raw materials for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号