首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the assumed association between indoor air pollution with monoterpenes (MTps) and the internal MTp exposure of occupants, a comparative study was performed in daycare centers in two federal states of Germany. Three well-known monoterpenoid air pollutants, viz. α-pinene (αPN), Δ3-carene (CRN), and R-limonene (LMN), were measured in indoor air in 45 daycare centers. Additionally, urine samples of 222 children visiting these facilities were collected in the evening after a full-day stay. Altogether 11 MTp metabolites were analyzed in the urine samples using a novel highly sensitive and selective gas chromatographic–tandem-mass spectrometric procedure. The medians (95th percentiles) of the MTp levels in indoor air were 9.1 μg m 3 (94 μg m 3) for LMN, 2.6 μg m 3 (13 μg m 3) for αPN, and < 1.0 μg m 3 (3.2 μg m 3) for CRN. None of the day care centers exceeded the German health precaution or hazard guide value. In spite of the low MTp air exposure, the urine analyses revealed an exposure to the three monoterpenes in almost all children. The median levels of MTp metabolites in urine were 0.11 mg L 1 for LMN-8,9-OH, 0.10 mg L 1 for LMN-1,2-OH, 49 μg L 1 for PA, 2.9 μg L 1 for POH, 5.2 μg L 1 for tCAR, and 4.1 μg L 1 for cCAR (LMN metabolites), 7.2 μg L 1 for MYR, 19 μg L 1 for tVER, and 19 μg L 1 for cVER (αPN metabolites), as well as 8.2 μg L 1 for CRN-10-COOH (CRN metabolite). Statistically significant and strong correlations among the urinary metabolites of each MTp were found. Moreover, statistical associations between LMN metabolites and the LMN indoor air levels were revealed. However, the weakness of the associations indicates a considerable impact of other MTp sources, e.g. diet and consumer products, on the internal exposure.  相似文献   

2.
Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM2.5 levels (1.3 × 101 to 2.9 × 101 μg/m3 for indoor; 9.5 to 8.8 × 101 μg/m3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5 × 101 μg/m3). Indoor PM2.5 mass concentrations were correlated with outdoor PM2.5 in four of the kindergartens. The PBDEs (0.10–0.64 ng/m3 in PM2.5; 0.30–2.0 × 102 ng/g in dust) and DP (0.05–0.10 ng/m3 in PM2.5; 1.3–8.7 ng/g in dust) were detected in 100% of the PM2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by > 7-fold from 8.8 × 102 ng/m 3 to 6.7 × 103 ng/m 3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7 × 101 μg/m3 to 9.3 × 101 μg/m3 indoors and from 1.9 × 101 μg/m3 to 4.3 × 101 μg/m3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E  05 to 2.1E  04 indoors and from 1.9E  05 to 6.2E  05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments.  相似文献   

3.
Concentrations of a number of organophosphate flame retardants (PFRs) were measured in floor dust collected from UK living rooms (n = 32), cars (n = 21), school and child daycare centre classrooms (n = 28), and offices (n = 61). While concentrations were overall broadly within the range of those reported previously for North America, Japan, and other European countries, median concentrations of TCIPP in all UK microenvironments exceeded those reported elsewhere in the world. Moreover, concentrations of TCIPP and TDCIPP in 2 UK car dust samples were – at 370 μg g 1 and 740 μg g 1 respectively – amongst the highest reported globally in indoor dust to date. Consistent with this, concentrations of TDCIPP in dust from UK cars exceed significantly those detected in the other microenvironments studied. Concentrations of EHDPP were shown for the first time to be significantly higher in classroom dust than in samples from other microenvironments. When compared to concentrations of PBDEs determined previously in the classroom dust samples; concentrations of all target PFRs exceeded substantially those of those PBDEs that are the principal constituents of the Penta- and Octa-BDE formulations. Moreover, while mass-based concentrations of BDE-209 exceeded those of most of our target PFRs, they still fell below those of TCIPP and EHDPP. In line with a previous observation in Sweden that indoor air contamination with TNBP was significantly lower in newer buildings; concentrations of TNBP in classroom dust were significantly higher in older compared to more recently-constructed schools. Consistent with the reported extensive use of TCIPP and TDCIPP in polyurethane foam, the highest concentrations of both TCIPP and TDCIPP in the classrooms studied, were observed in rooms containing the highest numbers of foam chairs (n = 31 and 18 respectively). Exposure to PFRs of both adults and young children via ingestion of indoor dust was estimated. While even our high-end exposure estimate for young children was ~ 100 times lower than one previously reported health-based limit (HBLV) value for TCIPP; the margin of safety was only 5-fold when compared to another HBLV for this contaminant.  相似文献   

4.
Organosiloxanes are widely used in the formulation of a broad range of cosmetic and personal care products (PCPs), including creams and lotions, bath soaps, shampoo and hair care products to soften, smooth, and moisten. In fact, the intensive and widespread use of organosiloxanes combined with their lipophilic nature, makes them interesting targets for future research, particularly in the toxicology area.This study focused on determining the concentration levels of these compounds in the bestselling brands of PCPs in the Oporto region (Portugal), allowing the estimation of dermal and inhalation exposure to siloxanes and the evaluation of the quantities released to the environment “down-the-drain” and to air. To accomplish this task, a QuEChERS technique (“Quick, Easy, Cheap, Effective, Rugged, and Safe”) was employed to extract the siloxanes from the target PCPs, which has never been tested before. The resulting extract was analysed by gas chromatography–mass spectrometry (GC–MS). The limits of detection varied between 0.17 (L2) and 3.75 ng g 1 (L5), being much lower than any values reported in the literature for this kind of products. In general, satisfactory precision (< 10%) and accuracy values (average recovery of 84%) were obtained.123 PCPs were analysed (moisturizers, deodorants, body and hair washes, toilet soaps, toothpastes and shaving products) and volatile methylsiloxanes were detected in 96% of the samples, in concentrations between 0.003 μg g 1 and 1203 μg g 1. Shampoo exhibited the highest concentration for cyclic and aftershaves for linear siloxanes. Combining these results with the daily usage amounts, an average daily dermal exposure of 25.04 μg kgbw 1 day 1 for adults and 0.35 μg kgbw 1 day 1 for baby/children was estimated. The main contributors for adult dermal exposure were body moisturizers, followed by facial creams and aftershaves, while for babies/children were body moisturizers, followed by shower gel and shampoo. Similarly, the average daily inhalation exposure was also estimated. Values of 1.56 μg kgbw 1 day 1 for adults and 0.03 μg kgbw 1 day 1 for babies/children were calculated. An estimate of the siloxanes amount released “down-the-drain” into the sewage systems through the use of toiletries was also performed. An emission per capita between 49.25 and 9574 μg day 1 (mean: 1817 μg day 1) is expected and shampoo and shower gel presented the higher mean total values (1008 μg day 1 and 473.3 μg day 1, respectively). In the worst-case scenario, D5 and D3 were the predominant siloxanes in the effluents with 3336 μg day 1 and 3789 μg day 1, respectively. Regarding the air emissions per capita, values between 8.33 and 6109 μg day 1 (mean: 1607 μg day 1) are expected and D5 and D6 were the predominant siloxanes.  相似文献   

5.
Personal exposures via ingestion of indoor dust to α-, β-, and γ-hexabromocyclododecanes (HBCDs) and the degradation products (pentabromocyclododecenes (PBCDs) and tetrabromocyclododecadienes (TBCDs)) were estimated for 21 UK adults. Under an average dust ingestion scenario, personal exposures ranged from 4.5 to 1851 ng ΣHBCDs day? 1; while the range under a high dust ingestion scenario was 11 to 4630 ng ΣHBCDs day? 1. On average, personal exposure to ΣHBCDs via dust ingestion in this study was 35% α-, 11% β-, and 54% γ-HBCD. However, while exposure to β-HBCD (4–18% of ΣHBCDs) was relatively consistent with the proportion of this diastereomer in the HBCD commercial formulation; exposures to α- and γ-isomers (11–58% and 29–82% of ΣHBCDs respectively) showed substantial variation from the commercial formulation pattern. Personal exposures to ΣTBCDs (median = 0.2 ng day? 1 under an average dust ingestion scenario) and ΣPBCDs (1.4 ng day? 1) were significantly lower (p < 0.05) than for ΣHBCDs (48 ng day? 1). Despite this, the exposure of one participant to ΣPBCDs exceeded the exposure to ΣHBCDs received by 85% of the other participants. On average, house dust provided the major contribution to personal exposure via dust ingestion to all target compounds due to the large time fraction spent in houses. In contrast, although participants spent less time in cars than in offices, car dust makes a higher average contribution (17%) to ΣHBCDs exposure than office dust (13%).  相似文献   

6.
Dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexanes (HCHs) are widely detected in the environment, although they have been banned in China since 1980s. To better understand the route-specific daily uptake of the pesticides by humans, a total of 322 food, dust, and air samples were collected in Shanghai, China, during 2008–2011. The median concentrations were 0.2–126.6 and 0.03–1.6 ng/g wet weight for DDTs (DDT and its metabolites) and HCHs, respectively, in different types of foods. The values in dust (indoors and outdoors) were 5.7–29.8 and 1.3–5.4 ng/g, and 13.9 × 10 3 and 2.6 × 10 3 ng/m3 in air (gas + particle) for DDTs and HCHs, respectively. The daily uptake of a pesticide by humans was calculated via the pesticide intake multiplied by its uptake efficiency. The uptake efficiencies of DDTs and HCHs in food through human intestines were estimated using bioaccessibility measured via an in vitro method simulating the human gastrointestinal digestion process. The total daily uptakes of DDTs and HCHs through three routes (i.e., ingestion, inhalation, and dermal contact) were 79.4 and 4.9 ng/day, respectively, for children, and 131.1 and 8.0 ng/day, respectively, for adults. Ingestion via food and dust was the main route of human exposure to the pesticides, and the daily uptake of the pesticides via food consumption accounted for 95.0–99.2% of the total.  相似文献   

7.
Inuit living in the Arctic are exposed to elevated levels of environmental contaminants primarily due to long-range atmospheric transport. Blood sampling and contaminant biomonitoring was conducted as part of the International Polar Year Inuit Health Survey in 2007-2008. The body burden of metals (e.g. Cd, Pb) and persistent organic pollutants (e.g. PCBs, DDT & DDE, toxaphene, chlordane, PBDEs) were measured for Inuit participants (n = 2172) from 36 communities in Nunavut, Nunatsiavut, and the Inuvialuit Settlement Region, in Canada. The geometric mean of blood concentrations for Cd, Pb, PCBs, DDE & DDT, toxaphene, and chlordane were higher than those in the Canadian general population. A total of 9% of study participants exceeded the intervention guideline of 100 μg L 1 for Pb, 11% of participants exceeded the trigger guideline of 5 μg L 1 for Cd, and 1% exceeded the intervention guideline of 100 μg L 1 for PCBs. Also, 3% of women of child-bearing age exceeded blood Pb of 100 μg L 1 while 28% of women of child-bearing age exceeded 5 μg L 1 of PCBs. This work showed that most Inuit Health Survey participants were below blood contaminant guidelines set by Health Canada but that metal and POP body burdens commonly exceed exposures observed in the general population of Canada.  相似文献   

8.
In addition to dietary exposure, children are exposed to metals via ingestion of soils and indoor dust, contaminated by natural or anthropogenic outdoor and indoor sources. The objective of this nationwide study was to assess metal contamination of soils and dust which young French children are exposed to. A sample of 484 children (6 months to 6 years) was constituted in order to obtain representative results for young French children. In each home indoor settled dust was sampled by a wipe in up to five rooms. Outdoor playgrounds were sampled with a soil sample ring (n = 315) or with a wipe in case of hard surfaces (n = 53). As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V were measured because of their potential health concern due to soil and dust ingestion. The samples were digested with hydrochloric acid, and afterwards aqua regia in order to determine both leachable and total metal concentrations and loadings by mass spectrometry with a quadrupole ICP-MS. In indoor settled dust most (total) loadings were below the Limit of Quantification (LOQ), except for Pb and Sr, whose median loadings were respectively 9 and 10 μg/m². The 95th percentile of loadings were 2 μg/m² for As, < 0.8 for Cd, 18 for Cr, 49 for Cu, < 64 for Mn, 63 for Pb, 2 for Sb, 56 for Sr, and < 8 for V. Median/95th percentile of loadings in settled dust on outdoor playgrounds were 2/16, < 0.8/1.3, 17/53, 49/330, 99/424, 32/393, 2/13, 86/661 and 10/37 μg/m² for As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V respectively. In outdoor playground soil median/95th percentile of concentrations (μg/g) were 8/26, < 0.65/1, 25/52, < 26/53,391/956, 27/254, 0.7/4, 54/295, 23/57 for As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V respectively. These results are comparable with those observed in other countries. Because of their representative nature, we can assess children's exposures to these metals via soil and dust and the associated risks in urban and rural environments. Ratios of leachable/total concentrations and loadings, calculated on > LOQ measurements, differed among metals. To a lesser extent, they were also affected by type of matrix, with (except for Cd) a greater leachability of dust (especially indoor) compared to soils.  相似文献   

9.
Fish consumption is considered as the primary pathway of human methylmercury (MeHg) exposure. However, recent studies highlighted that, rice, rather than fish, is the main route of human MeHg exposure in Guizhou, inland China. China is considered as the largest anthropogenic source of mercury (Hg) emission in the world, which has led to serious environmental Hg pollution. But there are no comprehensive studies regarding this environmental health problem to evaluate human Hg exposure and associated health effects. This study aimed to estimate daily MeHg intake and health risk in 7 provinces in southern China, and to assess the relative contribution from rice and fish consumption. The average levels of total mercury (THg) and MeHg in rice samples were generally low at 10.1 ng·g 1 and 2.47 ng·g 1, respectively. But a total of 36 rice samples (12.7%) had THg concentration exceeding the national limit (20 ng·g 1). Generally, rural population had significantly higher Probable Daily Intakes (PDIs) of MeHg than urban population from rice consumption and its relative contribution to MeHg exposure increased significantly from coastal to inland area. The averages of PDIs of MeHg were 0.020 μg·kg 1·d 1 and 0.028 μg·kg 1·d 1 for urban and rural population in southern China, respectively. Despite the serious environmental Hg pollutions in China, the general population in southern China had low risk of MeHg exposure. But rice is an important route of human MeHg exposure in southern China, especially for the rural population in inland area. The findings indicate that rice consumption should be considered when evaluating MeHg exposure in rice eating population in southern China.  相似文献   

10.
Within-house and within-room spatial temporal variability in PBDE contamination of indoor dust may influence substantially the reliability of human exposure assessments based on single point samples, but have hitherto been little studied. This paper reports concentrations of PBDEs 17, 28, 47, 49, 66, 85, 99, 100, 153, and 154 in indoor dust samples (n = 112) from two houses in Birmingham, UK. To evaluate within-house spatial variability, four separate rooms were sampled in house 1 and two separate rooms sampled in house 2. Up to four different 1 m2 areas in the same room were sampled to evaluate within-room spatial variability, and for all studied areas, samples were taken for eight consecutive months to evaluate temporal and seasonal variability. Concentrations of ΣPBDEs in individual samples from house 1 varied between 21 and 280 ng g 1; while the range of concentrations in house 2 was 20–1000 ng g 1. This indicates that where and when a sample is taken in a house can influence substantially the contamination detected. In one room, concentrations of PBDEs in an area located close to putative PBDE sources exceeded substantially those in an area 2 m away, with marked differences also observed between two areas in another room. Substantial within-room spatial differences in PBDE concentrations were not discernible in the other rooms studied. Concentrations of PBDEs in the majority of rooms within the same houses were not markedly different between rooms. Nevertheless, large differences were observed between PBDE concentrations detected in two rooms in the same house in both houses studied. In one instance, this is hypothesised to be attributable to the presence of a carpet in one room and bare wooden floor in another, but firm conclusions cannot be drawn. Within-room temporal (month-to-month) variability was substantial (relative standard deviations for ΣPBDEs = 15–200%). In some rooms, the introduction and removal of putative sources like a TV and a bed, appeared to exert a discernible influence on PBDE concentrations. PBDE concentrations in spring and summer were not markedly different from those observed in autumn and winter. Possible dilution of PBDE concentrations in dust at higher dust loadings (g dust per m2 floor surface) was investigated in a small number of rooms, but no firm evidence of such dilution was evident.  相似文献   

11.
Mercury (Hg) is a potentially toxic metal ubiquitous in arctic biota. Livers of adult thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) sampled from several locations in the eastern Canadian Arctic during 2007–2008 were analyzed for total Hg in order to assess geographical patterns. Thick-billed murres were collected from five colonies (Coats Island, Digges Island, Akpatok Island, Prince Leopold Island, Minarets) and northern fulmars from two colonies (Prince Leopold Island, Minarets). Murres at the two high Arctic colonies of Prince Leopold Island and the Minarets had significantly higher (two-fold) Hg concentrations (4.13 ± 019 μg g 1 dw and 4.41 ± 0.33 μg g 1 dw, respectively) than at the three low Arctic colonies (colony means of 1.62, 1.99 and 2.15 μg g 1 dw). The differences in Hg concentrations observed between high and low Arctic murre colonies may reflect a combination of different source regions for Hg, as well as a recent dietary shift among low Arctic murres. Fulmars from Prince Leopold Island had significantly higher Hg levels (6.99 ± 1.13 μg g 1 dw) than those from the Minarets (3.42 ± 0.53 μg g 1 dw) which may reflect different Hg deposition and methylation patterns on both summer and winter feeding areas. Although there is no evidence linking Hg to adverse population effects in either murres or fulmars at the colonies sampled, levels in some Canadian Arctic marine birds have increased over recent decades and, therefore, continued monitoring, particularly of the high Arctic colonies, is warranted.  相似文献   

12.
This review summarizes the published literature on the presence of polycyclic aromatic hydrocarbons (PAH) in indoor air, settled house dust, and food, and highlights geographical and temporal trends in indoor PAH contamination. In both indoor air and dust, ΣPAH concentrations in North America have decreased over the past 30 years with a halving time of 6.7 ± 1.9 years in indoor air and 5.0 ± 2.3 years in indoor dust. In contrast, indoor PAH concentrations in Asia have remained steady. Concentrations of ΣPAH in indoor air are significantly (p < 0.01) higher in Asia than North America. In studies recording both vapor and particulate phases, the global average concentration in indoor air of ΣPAH excluding naphthalene is between 7 and 14,300 ng/m3. Over a similar period, the average ΣPAH concentration in house dust ranges between 127 to 115,817 ng/g. Indoor/outdoor ratios of atmospheric concentrations of ΣPAH have declined globally with a half-life of 6.3 ± 2.3 years. While indoor/outdoor ratios for benzo[a]pyrene toxicity equivalents (BaPeq) declined in North America with a half-life of 12.2 ± 3.2 years, no significant decline was observed when data from all regions were considered. Comparison of the global database, revealed that I/O ratios for ΣPAH (average = 4.3 ± 1.3), exceeded significantly those of BaPeq (average = 1.7 ± 0.4) in the same samples. The significant decline in global I/O ratios suggests that indoor sources of PAH have been controlled more effectively than outdoor sources. Moreover, the significantly higher I/O ratios for ΣPAH compared to BaPeq, imply that indoor sources of PAH emit proportionally more of the less carcinogenic PAH than outdoor sources. Dietary exposure to PAH ranges from 137 to 55,000 ng/day. Definitive spatiotemporal trends in dietary exposure were precluded due to relatively small number of relevant studies. However, although reported in only one study, PAH concentrations in Chinese diets exceeded those in diet from other parts of the world, a pattern consistent with the spatial trends observed for concentrations of PAH in indoor air. Evaluation of human exposure to ΣPAH via inhalation, dust and diet ingestion, suggests that while intake via diet and inhalation exceeds that via dust ingestion; all three pathways contribute and merit continued assessment.  相似文献   

13.
Detailed polychlorinated biphenyl (PCB) signatures and chiral Enantiomer Fractions (EFs) of CB-95, CB-136 and CB-149 were measured for 30 workers at a transformer dismantling plant. This was undertaken to identify sources of exposure and investigate changes to the PCB signature and EFs over different exposure periods. Approximately 1.5 g of serum was extracted and PCB signatures were created through analysis by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC–TOFMS) and EFs calculated following analysis by gas chromatography with high resolution mass spectrometry (GC–HRMS). A total of 84 PCBs were identified in the serum samples with concentrations of the 7 indicator PCBs ranging from 11–350 ng g 1 of serum (1.2–39 μg g 1 lipid). The PCB signatures were interpreted using principal component analysis (PCA) which was able to distinguish workers with background or recent minimal exposure from those with prolonged occupational exposure. Occupationally exposed individuals had a similar PCB profile to Aroclor A1260. However, individuals with prolonged exposure had depleted proportions of several PCB congeners that are susceptible to metabolism (CB-95, CB-101 and CB-151) and elevated proportions of PCBs that are resistant to metabolism (CB-74, CB-153, CB-138 and CB-180). The results also identified a third group of workers with elevated proportions of CB-28, CB-60, CB-66, CB-74, CB-105 and CB-118 who appeared to have been exposed to an additional source of PCBs. The results show near complete removal of the CB-95 E2 enantiomer in some samples, indicating that bioselective metabolism or preferential excretion of one enantiomer occurs in humans. By considering PCB concentrations along with detailed congener specific signatures it was possible to identify different exposure sources, and gain an insight into both the magnitude and duration of exposure.  相似文献   

14.
Although the transfer of organo-metallic mercury (OrgHg) in aquatic food webs has long been studied, it has only been recently recognized that there is also accumulation in terrestrial systems. There is still however little information about the exposure of grazing animals to OrgHg from soils and feed as well as on risks of exposure to animal and humans.In this study we collected 78 soil samples and 40 plant samples (Lolium perenne and Brassica juncea) from agricultural fields near a contaminated industrial area and evaluated the soil-to-plant transfer of Hg as well as subsequent trophic transfer. Inorganic Hg (IHg) concentrations ranged from 0.080 to 210 mg kg 1 d.w. in soils, from 0.010 to 84 mg kg 1 d.w. in roots and from 0.020 to 6.9 mg kg 1 d.w. in shoots. OrgHg concentrations in soils varied between 0.20 and 130 μg kg 1 d.w. representing on average 0.13% of the total Hg (THg). In root and shoot samples OrgHg comprised on average 0.58% (roots) and 0.66% (shoots) of THg. Average bioaccumulation factors (BAFs) for OrgHg in relation to soil concentrations were 3.3 (for roots) and 1.5 (for shoots).The daily intake (DI) of THg in 33 sampling sites exceeded the acceptable daily intake (ADI) of THg of both cows (ADI = 1.4 mg d 1) and sheep (ADI = 0.28 mg d 1), in view of food safety associated with THg in animal kidneys. Estimated DI of OrgHg for grazing animals were up to 220 μg d 1 (for cows) and up to 33 μg d 1 (for sheep).This study suggested that solely monitoring the levels of THg in soils and feed may not allow to adequately taking into account accumulation of OrgHg in feed crops and properly address risks associated with OrgHg exposure for animals and humans. Hence, the inclusion of limits for OrgHg in feed quality and food safety legislation is advised.  相似文献   

15.
Hydroxylated (OH-) and methoxylated (MeO-) polybrominated diphenyl ethers (PBDE) are suspected endocrine disruptors. Little is known about the accumulation or sources of these chemicals in tissues of humans, particularly those residing in Hong Kong, which is one of the most densely populated cities in the world. Seven MeO-BDEs, fifteen OH-BDEs and three bromophenols (BRPs) were analyzed in blood plasma of 116 humans that had been collected by the Hong Kong Red Cross. Total concentrations of MeO-BDEs, OH-BDEs and BRPs ranged from 3.8 × 102 to 52 × 103 pg g 1 lipid (median 4.5 × 103 pg g 1), 5.3 to 4.9 × 102 pg g 1 lipid (81 pg g 1) and ND to 1.1 × 102 pg g 1 lipid (3.7 pg g 1), respectively. 3-MeO-BDE-47, 6-OH-BDE-47 and 2, 4, 5-TBP were the predominant MeO-BDEs, OH-BDEs and BRPs, respectively. These results are consistent with accumulation of MeO-BDEs, OH-BDEs and BRPs in human plasma being primarily from natural products and inter-conversion of natural products. Coefficients of determination for some pairs of congeners such as 3-OH-BDE-100 and 6-OH-BDE-47, 6-OH-BDE-85 and 5′-OH-BDE-99, and 2, 4-DBP and 6-OH-BDE-85, were near 1.0, which is consistent with them having common sources. Patterns of relative concentrations of the target analytes were similar in the diet, particularly fish, as in blood plasma of humans, which suggests that the diet and particularly seafood might be a source of these compounds and PBDEs. Furthermore, biotransformation of natural chemicals such as OH-BDEs to BRPs might be the primary route of their elimination from humans.  相似文献   

16.
ObjectivesTo examine associations between short/medium-term variations in black smoke air pollution and mortality in the population of Glasgow and the adjacent towns of Renfrew and Paisley over a 25-year period at different time lags (0–30 days).MethodsGeneralised linear (Poisson) models were used to investigate the relationship between lagged black smoke concentrations and daily mortality, with allowance for confounding by cold temperature, between 1974 and 1998.ResultsWhen a range of lag periods were investigated significant associations were noted between temperature-adjusted black smoke exposure and all-cause mortality at lag periods of 13–18 and 19–24 days, and respiratory mortality at lag periods of 1–6, 7–12, and 13–18 days. Significant associations between cardiovascular mortality and temperature-adjusted black smoke were not observed. After adjusting for the effects of temperature a 10 μg m 3 increase in black smoke concentration on a given day was associated with a 0.9% [95% Confidence Interval (CI): 0.3–1.5%] increase in all cause mortality and a 3.1% [95% CI: 1.4–4.9%] increase in respiratory mortality over the ensuing 30-day period. In contrast for a 10 μg m 3 increase in black smoke concentration over 0–3 day lag period, the temperature adjusted exposure mortality associations were substantially lower (0.2% [95% CI: − 0.0–0.4%] and 0.3% [95% CI: − 0.2–0.8%] increases for all-cause and respiratory mortality respectively).ConclusionsThis study has provided evidence of association between black smoke exposure and mortality at longer lag periods than have been investigated in the majority of time series analyses.  相似文献   

17.
Human health burdens associated with long-term exposure to particulate matter (PM) are substantial. The metrics currently recommended by the World Health Organization for quantification of long-term health-relevant PM are the annual average PM10 and PM2.5 mass concentrations, with no low concentration threshold. However, within an annual average, there is substantial variation in the composition of PM associated with different sources. To inform effective mitigation strategies, therefore, it is necessary to quantify the conditions that contribute to annual average PM10 and PM2.5 (rather than just short-term episodic concentrations). PM10, PM2.5, and speciated water-soluble inorganic, carbonaceous, heavy metal and polycyclic aromatic hydrocarbon components are concurrently measured at the two UK European Monitoring and Evaluation Programme (EMEP) ‘supersites’ at Harwell (SE England) and Auchencorth Moss (SE Scotland). In this work, statistical analyses of these measurements are integrated with air-mass back trajectory data to characterise the ‘chemical climate’ associated with the long-term health-relevant PM metrics at these sites. Specifically, the contributions from different PM concentrations, months, components and geographic regions are detailed. The analyses at these sites provide policy-relevant conclusions on mitigation of (i) long-term health-relevant PM in the spatial domain for which these sites are representative, and (ii) the contribution of regional background PM to long-term health-relevant PM.At Harwell the mean (± 1 sd) 2010–2013 annual average concentrations were PM10 = 16.4 ± 1.4 μg m 3 and PM2.5 = 11.9 ± 1.1 μg m 3 and at Auchencorth PM10 = 7.4 ± 0.4 μg m 3 and PM2.5 = 4.1 ± 0.2 μg m 3. The chemical climate state at each site showed that frequent, moderate hourly PM10 and PM2.5 concentrations (defined as approximately 5–15 μg m 3 for PM10 and PM2.5 at Harwell and 5–10 μg m 3 for PM10 at Auchencorth) determined the magnitude of annual average PM10 and PM2.5 to a greater extent than the relatively infrequent high, episodic PM10 and PM2.5 concentrations. These moderate PM10 and PM2.5 concentrations were derived across the range of chemical components, seasons and air-mass pathways, in contrast to the highest PM concentrations which tended to associate with specific conditions. For example, the largest contribution to moderate PM10 and PM2.5 concentrations – the secondary inorganic aerosol components, specifically NO3 – were accumulated during the arrival of trajectories traversing the spectrum of marine, UK, and continental Europe areas. Mitigation of the long-term health-relevant PM impact in the regions characterised by these two sites requires multilateral action, across species (and hence source sectors), both nationally and internationally; there is no dominant determinant of the long-term PM metrics to target.  相似文献   

18.
The occurrence, partitioning and risk of eight polybrominated diphenyl ethers (PBDEs), nine new brominated (NBFRs) and ten organophosphorus flame retardants (OPFRs) were evaluated in three Spanish rivers suffering different anthropogenic pressures (Nalón, Arga and Besòs). OPFRs were ubiquitous contaminants in water (ΣOPFRs ranging from 0.0076 to 7.2 μg L 1) and sediments (ΣOPFRs ranging 3.8 to 824 μg kg 1). Brominated flame retardants were not detected in waters, whereas ΣPBDEs ranged from 88 to 812 μg kg 1 and decabromodiphenyl ethane (DBDPE) reached 435 μg kg 1 in sediments from the River Besòs, the most impacted river. The occurrence of flame retardants in river water and sediment was clearly associated with human activities, since the highest levels occurred near urban and industrial zones and after wastewater treatment plants discharge. Daphnia magna toxicity was carried out for OPFRs, the most ubiquitous flame retardants, considering individual compounds and mixtures. Toxicity of nine tested OPFRs differed largely among compounds, with EC50 values ranging over three magnitude orders (0.31–381 mg L 1). Results evidenced that these compounds act by non-polar narcosis, since their toxicity was proportional to their lipophilicity (Kow). Furthermore, their joint toxicity was additive, which means that single and joint toxicity can be predicted knowing their concentration levels in water using quantitative structure activity relationships (QSARs) and predictive mixture models. Based on these results, a risk assessment considering joint effect was performed calculating and summing risk quotients (RQs) for the water and sediment samples. No significant risk to D. magna (ΣRQs < 1) was observed for any of the monitored rivers.  相似文献   

19.
BackgroundTraditional food (TF) consumption represents the main route of persistent organic pollutant (POP) exposure for indigenous Arctic Canadians. Ongoing dietary transitions away from TFs and toward imported foods (IFs) may contribute to decreasing POP exposures observed in these groups.MethodsTo explore this issue, we combined the global fate and transport model GloboPOP and the human food chain bioaccumulation model ACC-Human Arctic to simulate polychlorinated biphenyl (PCB) exposure in two indigenous Arctic Canadian communities from the Inuvik region, Northwest Territories and Baffin region, Nunavut. Using dietary survey information from initial (1996–98) and follow-up (2005–07) biomonitoring campaigns in Inuvik and Baffin, we simulated PCB exposures (PCB-118, -138, -153, and -180) for each individual study participant and also whole study populations.ResultsTF intake rates, particularly of marine mammals (MMs), were the most important predictors of modeled PCB exposure, while TF consumption did not associate consistently with measured PCB exposures. Further, reported mean TF intake increased from baseline to follow-up in both Inuvik (from 8 to 183 g d 1) and Baffin (from 60 to 134 g d 1), opposing both the expected dietary transition direction and the observed decrease in human PCB exposures in these communities (ΣPCB Inuvik: from 43 to 29 ng g lipid 1, ΣPCB Baffin: from 213 to 82 ng g lipid 1). However dietary questionnaire data are frequently subject to numerous biases (e.g., recall, recency, confirmation), and thus casts doubt on the usefulness of these data.ConclusionsUltimately, our model's capability to reproduce historic PCB exposure data in these two groups was highly sensitive to TF intake, further underscoring the importance of accurate TF consumption reporting, and clarification of the role of dietary transitions in future POP biomonitoring of indigenous Arctic populations.  相似文献   

20.
ObjectivesEmissions of mercury in the environment have been decreasing for several years. However, mercury species are still found in different media (food, water, air and breast-milk). Due to mercury toxicity and typical behaviour in children, we have conducted a mercury exposure assessment in French babies, and small children aged 0 to 36 months.MethodConsumption and mercury concentration data were chosen for the exposure assessment. The Monte Carlo technique has been used to calculate the weekly exposure dose in order to integrate inter-individual variability and parameter uncertainty. Exposure values have been compared to toxicological reference values for health risk assessment.ResultsInorganic mercury median exposure levels ranged from 0.160 to 1.649 μg/kg of body weight per week (95th percentile (P95): 0.298–2.027 µg/kg bw/week); elemental mercury median exposure level in children was 0.11 ng/kg bw/week (P95: 28 ng/kg bw/week); and methylmercury median exposure level ranged from 0.247 to 0.273 µg/kg bw/week (P95: 0.425–0.463 µg/kg bw/week). Only elemental mercury by inhalation route (indoor air) and methylmercury by ingestion (fish and breast-milk) seem to lead to a health risk in small children.ConclusionsThese results confirm the importance of assessing total mercury concentration in media like breast-milk, indoor air and dust and methylmercury level in food, other than fish and seafood. In this way, informed monitoring plan and risk assessment in an at-risk sub-population can be set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号