首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Polybrominated diphenyl ethers (PBDEs) are present in many consumer goods. There is evidence that PBDEs are toxic to humans, particular young children. The purpose of this study was to assess indoor dust as an exposure source for PBDEs. Concentrations of 16 PBDEs were determined in dust samples from 33 households in New Zealand, and in breast milk samples from 33 mothers living in these households. Associations between dust and breast milk PBDE concentrations were assessed, and children's PBDE intake from breast milk and dust estimated. Influences of household and demographic factors on PBDE concentrations in dust were investigated. Indoor dust concentrations ranged from 0.1 ng/g for BDE17 to 2500 ng/g for BDE209. Breast milk concentrations were positively correlated (p < 0.05) with mattress dust concentrations for BDE47, BDE153, BDE154, and BDE209 and with floor dust for BDE47, BDE183, BDE206, and BDE209. The correlation for BDE209 between dust and breast milk is a novel finding. PBDE concentrations in floor dust were lower from households with new carpets. The estimated children's daily intake of PBDEs from dust and breast milk was below U.S. EPA Reference Dose values. The study shows that dust is an important human exposure source for common PBDE formulations in New Zealand.  相似文献   

2.
Restrictions on the use of polybrominated diphenyl ethers (PBDEs) have resulted in the use of alternative flame retardants in consumer products to comply with flammability standards. In contrast to PBDEs, information on the occurrence and fate of these alternative compounds in the environment is limited, particularly in the United States. In this study, a survey of flame retardants in San Francisco Bay was conducted to evaluate whether PBDE replacement chemicals and other current use flame retardants were accumulating in the Bay food web. In addition to PBDEs, brominated and chlorinated flame retardants (hexabromocyclododecane (HBCD) and Dechlorane Plus (DP)) were detected in Bay sediments and wildlife. Median concentrations of PBDEs, HBCD, and DP, respectively, were 4.3, 0.3, and 0.2 ng g 1 dry weight (dw) in sediments; 1670, < 6.0, and 0.5 ng g 1 lipid weight (lw) in white croaker (Genyonemus lineatus); 1860, 6.5, and 1.3 ng g 1 lw in shiner surfperch (Cymatogaster aggregata); 5500, 37.4, and 0.9 ng g 1 lw in eggs of double-crested cormorant (Phalacrocorax auritus); 770, 7.1, and 0.9 ng g 1 lw in harbor seal (Phoca vitulina) adults; and 330, 3.5, and < 0.1 ng g 1 lw in harbor seal (P. vitulina) pups. Two additional flame retardants, pentabromoethylbenzene (PBEB) and 1,2-bis(2,4,6 tribromophenoxy)ethane (BTBPE) were detected in sediments but with less frequency and at lower concentrations (median concentrations of 0.01 and 0.02 ng g 1 dw, respectively) compared to the other flame retardants. PBEB was also detected in each of the adult harbor seals and in 83% of the pups (median concentrations 0.2 and 0.07 ng g 1 lw, respectively). The flame retardants hexabromobenzene (HBB), decabromodiphenyl ethane (DBDPE), bis(2-ethylhexyl) tetrabromophthalate (TBPH), and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB), were not detected in sediments and BTBPE, HBB and TBB were not detected in wildlife samples. Elevated concentrations of some flame retardants were likely associated with urbanization and Bay hydrodynamics. Compared to other locations, concentrations of PBDEs in Bay wildlife were comparable or higher, while concentrations of the alternatives were generally lower. This study is the first to determine concentrations of PBDE replacement products and other flame retardants in San Francisco Bay, providing some of the first data on the food web occurrence of these flame retardants in a North American urbanized estuary.  相似文献   

3.
Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007–2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002–2003 from the same region.PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m3; and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r = 0.661, p = 0.038) and BDE-153 in dust and BDE-183 in human milk (r = 0.697, p = 0.025). These correlations do not suggest causal relationships — there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002–2003 to 2007–2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002–2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis.The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual congeners from the different matrices were observed. Specifically, as the level of bromination increased, the contribution of PBDE intake decreased via human milk and increased via dust. As the impacts of the ban of the lower brominated (penta- and octa-BDE) products become evident, an increased use of the higher brominated deca-BDE product may result in dust making a greater contribution to infant exposure than it does currently.To better understand human body burden, further research is required into the sources and exposure pathways of PBDEs and metabolic differences influencing an individual's response to exposure. In addition, temporal trend analysis is necessary with continued monitoring of PBDEs in the human population as well as in the suggested exposure matrices of food, dust and air.  相似文献   

4.
There are limited data concerning the placenta transfer characteristics and accumulation of polybrominated diphenyl ethers (PBDEs) in infants. However, PBDEs received increasing health concerns due to their endocrine disrupt and neurodevelopment toxicity effects. The present study assessed the accumulation of PBDEs in 30 paired placenta, breast milk, fetal cord blood, and neonatal urine samples collected from five major cities of the South China. The age of mothers ranged from 21 to 39 (mean 27.6 ± 4.56). The ∑ PBDE concentrations were 15.8 ± 9.88 ng g 1 lipid in placenta, 13.2 ± 7.64 ng g 1 lipid in breast milk, 16.5 ± 19.5 ng g 1 lipid in fetal cord blood, and 1.80 ± 1.99 ng ml 1 in neonatal urine. BDE-47 was the predominant congener in all types of human sample. Octa-BDEs such as BDE-196/-197 were detected highly in placenta and cord blood while moderately in breast milk and neonatal urine. Significant (p < 0.01) correlations were observed for both total and most individual PBDEs in cord blood–maternal placenta and breast milk–urine paired individual samples. The extent of placental transfer of higher brominated BDEs such as BDE-196/-197 was greater than that of BDE-47. The estimated daily intake (EDI) analysis for breast-fed infants revealed that newborns in these areas were exposed to relatively high levels of PBDEs via breast milk. Our study not only provided systematic fundamental data for PBDE distribution but also revealed the placenta transfer characteristics of PBDE congeners in South China.  相似文献   

5.
The temporal evolution of concentrations of α-, β-, and γ-hexabromocyclododecanes (HBCDs), and pentabromocyclododecenes (PBCDs — degradation products of HBCDs) was studied in separate aliquots of a well-homogenized indoor dust sample. These were: (a) exposed to natural light, and (b) kept in the dark. Results revealed a rapid photolytically-mediated shift from γ-HBCD to α-HBCD that was complete after 1 week of exposure, and a slower degradative loss of HBCDs via elimination of HBr. Under the specific conditions studied in this experiment, calculated half-lives (t1/2) showed the decay in ΣHBCDs concentration was faster in light-exposed samples (t1/2 = 12 weeks), than in light-shielded dust (t1/2 = 26 weeks). Within-room spatial and temporal variability in concentrations and diastereomer patterns were studied in six and three rooms respectively. While in some rooms, little variability was detected, in others it was substantial. In one room, concentrations of ΣHBCDs and the relative abundance of γ-HBCD declined dramatically with increasing distance from a TV. The same TV appears to have influenced strongly the temporal variation in that room; with higher concentrations observed in its presence and when the TV was moved closer to the area sampled. Significant negative correlation was observed in one room between concentrations of ΣHBCDs and dust loading (g dust m? 2 floor), implying “dilution” occurs at higher dust loadings.  相似文献   

6.
Concentrations of more than 20 brominated flame retardants (FRs), including polybrominated diphenyl ethers (PBDEs) and emerging FRs, were measured in air, dust and window wipes from 63 homes in Canada, the Czech Republic and the United States in the spring and summer of 2013. Among the PBDEs, the highest concentrations were generally BDE-209 in all three matrices, followed by Penta-BDEs. Among alternative FRs, EHTBB and BEHTBP were detected at the highest concentrations. DBDPE was also a major alternative FR detected in dust and air. Bromobenzenes were detected at lower levels than PBDEs and other alternative FRs; among the bromobenzenes, HBB and PBEB were the most abundant compounds. In general, FR levels were highest in the US and lowest in the Czech Republic — a geographic trend that reflects the flame retardants' market. No statistically significant differences were detected between bedroom and living room FR concentrations in the same house (n = 10), suggesting that sources of FRs are widespread indoors and mixing between rooms. The concentrations of FRs in air, dust, and window film were significantly correlated, especially for PBDEs. We found a significant relationship between the concentrations in dust and window film and in the gas phase for FRs with log KOA values < 14, suggesting that equilibrium was reached for these but not compounds with log KOA values > 14. This hypothesis was confirmed by a large discrepancy between values predicted using a partitioning model and the measured values for FRs with log KOA values > 14.  相似文献   

7.
Concentrations of a number of organophosphate flame retardants (PFRs) were measured in floor dust collected from UK living rooms (n = 32), cars (n = 21), school and child daycare centre classrooms (n = 28), and offices (n = 61). While concentrations were overall broadly within the range of those reported previously for North America, Japan, and other European countries, median concentrations of TCIPP in all UK microenvironments exceeded those reported elsewhere in the world. Moreover, concentrations of TCIPP and TDCIPP in 2 UK car dust samples were – at 370 μg g 1 and 740 μg g 1 respectively – amongst the highest reported globally in indoor dust to date. Consistent with this, concentrations of TDCIPP in dust from UK cars exceed significantly those detected in the other microenvironments studied. Concentrations of EHDPP were shown for the first time to be significantly higher in classroom dust than in samples from other microenvironments. When compared to concentrations of PBDEs determined previously in the classroom dust samples; concentrations of all target PFRs exceeded substantially those of those PBDEs that are the principal constituents of the Penta- and Octa-BDE formulations. Moreover, while mass-based concentrations of BDE-209 exceeded those of most of our target PFRs, they still fell below those of TCIPP and EHDPP. In line with a previous observation in Sweden that indoor air contamination with TNBP was significantly lower in newer buildings; concentrations of TNBP in classroom dust were significantly higher in older compared to more recently-constructed schools. Consistent with the reported extensive use of TCIPP and TDCIPP in polyurethane foam, the highest concentrations of both TCIPP and TDCIPP in the classrooms studied, were observed in rooms containing the highest numbers of foam chairs (n = 31 and 18 respectively). Exposure to PFRs of both adults and young children via ingestion of indoor dust was estimated. While even our high-end exposure estimate for young children was ~ 100 times lower than one previously reported health-based limit (HBLV) value for TCIPP; the margin of safety was only 5-fold when compared to another HBLV for this contaminant.  相似文献   

8.
Some persistent organic pollutants (POPs) have been found in human semen but until this point it was unclear whether polybrominated diphenyl ethers (PBDEs) could be detected in human semen. In this study, PBDEs were found for the first time in human semen samples (n = 101) from Taizhou, China. The concentrations of total PBDEs (∑ PBDEs) varied from 15.8 to 86.8 pg/g ww (median = 31.3 pg/g ww) and 53.2 to 121 pg/g ww (median = 72.3 pg/g ww) in semen and blood samples, respectively. The ∑ PBDE level in semen was about two times lower than in human blood, which was different in the distribution in the two matrices from other POPs. A correlation of ∑ PBDE concentration was found between paired semen and in blood. The results suggest that semen could be used to detect PBDE burden in human body as a non-invasive matrix. In addition, the levels of BDE-209 and BDE-153, especially the latter, were much higher in blood than in semen, while the levels of BDE-28, BDE-47 and BDE-99 were comparable in the two matrices, suggesting that low brominated congeners could be more easily transferred to semen than high brominated congeners. Considering different toxicities among the PBDE congeners, it might be more significant to measure PBDEs in semen than in blood for evaluating male reproduction risks of PBDEs.  相似文献   

9.
Increased use of flame-retardants in office furniture may increase exposure to PBDEs in the office environment. However, partitioning of PBDEs within the office environment is not well understood. Our objectives were to examine relationships between concurrent measures of PBDEs in office air, floor dust, and surface wipes.We collected air, dust, and surface wipe samples from 31 offices in Boston, MA. Correlation and linear regression were used to evaluate associations between variables. Geometric mean (GM) concentrations of individual BDE congeners in air and congener specific octanol–air partition coefficients (Koa) were used to predict GM concentrations in dust and surface wipes and compared to the measured concentrations.GM concentrations of PentaBDEs in office air, dust, and surface wipes were 472 pg/m3, 2411 ng/g, and 77 pg/cm2, respectively. BDE209 was detected in 100% of dust samples (GM = 4202 ng/g), 93% of surface wipes (GM = 125 pg/cm2), and 39% of air samples. PentaBDEs in dust and air were moderately correlated with each other (r = 0.60, p = 0.0003), as well as with PentaBDEs in surface wipes (r = 0.51, p = 0.003 for both dust and air). BDE209 in dust was correlated with BDE209 in surface wipes (r = 0.69, p = 0.007). Building (three categories) and PentaBDEs in dust were independent predictors of PentaBDEs in both air and surface wipes, together explaining 50% (p = 0.0009) and 48% (p = 0.001) of the variation respectively. Predicted and measured concentrations of individual BDE congeners were highly correlated in dust (r = 0.98, p < 0.0001) and surface wipes (r = 0.94, p = 002). BDE209 provided an interesting test of this equilibrium partitioning model as it is a low volatility compound.Associations between PentaBDEs in multiple sampling media suggest that collecting dust or surface wipes may be a convenient method of characterizing exposure in the indoor environment. The volatility of individual congeners, as well as physical characteristics of the indoor environment, influence relationships between PBDEs in air, dust, and surface wipes.  相似文献   

10.
Several classes of flame retardants, such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphate flame retardants (PFRs), together with polychlorinated biphenyls (PCBs) were measured in indoor dust from five villages located in three e-waste recycling regions in Guangdong Province, South China. The medians of PBDEs, NBFRs, and PFRs in dust in five sites ranged from 685–67,500, 1460–50,010, and 2180–29,000 ng/g, respectively. These concentrations were much higher than the medians of PCBs (52–2900 ng/g). BDE 209 and decabromodiphenyl ethane (DBDPE) were the two major halogen flame retardants in dust, while tris-(1-chloro-2-propyl) phosphate (TCIPP) and triphenyl phosphate (TPHP) were the major PFRs. Principle component analysis revealed the different pollutant patterns among different sites. The estimated median human exposures of PBDEs, NBFRs, PFRs, and PCBs via dust ingestion were 1.1–24.1, 0.73–20.3, 1.36–23.5, and 0.04–0.93 ng/kg bw/day for adults, and 16.2–352, 10.7–296, 19.9–343, 0.05–0.61, 0.65–13.6 ng/kg bw/day for toddlers, respectively. Residents from Site 5 had the highest exposure (95 percentile levels and high dust ingestion for toddlers) of PBDEs (3920 ng/kg bw/day), NBFRs (3200 ng/kg bw/day), and PFRs (5280 ng/kg bw/day). More attention should be paid to the contamination with NBFRs and PFRs, instead of PCBs, in these e-waste recycling regions, and local public health threat from PBDE alternatives should remain of concern. To the best of our knowledge, this is the first study on human exposure assessment of PFRs at e-waste sites.  相似文献   

11.
Polybrominated diphenyl ethers (PBDEs) have previously been detected in children toys, yet the risk of child exposure to these chemicals through the mouthing of toys or other items is still unknown. We aimed to expand on the current knowledge by investigating the impact of infants' mouthing activities on exposure to PBDEs present in toys. This was established by a leaching model for determining the amount PBDEs that can leach from toys into saliva in simulated conditions. The PBDE migration rate was at its highest for the 15 min low-exposure scenario incubations (198 pg/cm2 × min) with the ERM EC-591 certified reference material (CRM) (0.17% w/w PBDEs). The leaching process was congener-dependent, since the percentage of lower brominated PBDE congeners that leached out was up to 4.5 times higher than for the heavier PBDEs. To study the scenario in which a child would mouth on a toy flame retarded with BDE 209 alone, a plastic item containing 7% BDE 209 (w/w) was also tested. The BDE 209 amounts leached out in only 15 min were higher than the amounts leached from the CRM after the 16 h incubation. For the Belgian population, the exposure scenario from mouthing on toys containing PBDEs in amounts similar to the REACH threshold was found to be lower than the exposure from mother's milk, but higher than the exposure through diet or even dust.  相似文献   

12.
The levels of BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, and BDE-209 were determined in the dust sampled from 60 automobiles that were available for resale at U.S. dealerships. The dominant congener in automobile dust was BDE-209 comprising 95% of the total PBDE levels with a median level of 48.1 µg g? 1. Statistical analysis of the vehicle attributes indicates that the BDE-209 levels are different (p < 0.05) with respect to groupings by vehicle model year, vehicle manufacturer, and the country of manufacture. Vehicle dust samples contained the characteristic profile of the PBDE congeners that comprise the PentaBDE formulation. While DecaBDE use is banned in Maine and Washington and is targeted for restriction in the near future by six U.S. states, vehicles and airplanes are exempt from the ban. It is anticipated that the human exposure potential to PBDEs from automobile dust ingestion will continue for an indefinite future period in the U.S. population.  相似文献   

13.
There is evidence of endocrine disruption and reproductive effects in animals following exposure to certain PBDEs, but human studies are limited. The goal of this study was to investigate the use of serum and follicular fluid as biomarkers of exposure to PBDEs and to explore whether a relationship between PBDE exposure and early pregnancy loss exists. We measured 8 PBDE congeners in archived serum and ovarian follicular fluid samples from 65 women undergoing in-vitro fertilization (IVF). Logistic regression models were used to predict the odds of failed embryo implantation associated with higher levels of PBDEs among the women in the study. There were moderate Kendall's Tau-beta correlations between serum and follicular fluid concentrations of BDE 28, 47, 100 and 154 (Tβ = 0.29–0.38, all p-values < 0.005), but BDE 99 and 153 were not correlated between the two matrices (Tβ < 0.2, p-values > 0.05). Women with detectable concentrations of BDE 153 (39% had detectable levels) in follicular fluid had elevated odds of failed implantation compared with women who had non-detectable concentrations (adjusted OR = 10.0; 95%CI: 1.9 to 52; p = 0.006; adjusted by age and body mass index). These findings suggest that exposure to BDE 153 may be associated with failed embryo implantation. Due to our observation of only moderate correlations between matrices, serum PBDE concentrations may not be a good indicator of follicular fluid concentrations when studying early pregnancy endpoints in women undergoing IVF.  相似文献   

14.
Polybromodiphenyl ethers (PBDEs), including the decabromodiphenyl congener (BDE-209), were determined in the serum of 731 individuals from a general adult population (18–74 years) collected in 2002 in Catalonia (north-eastern Spain). The BDE-209 was the predominant congener (median 3.7 ng/g lipid) followed by BDE-47 (2.6 ng/g lipid) and BDE-99 (1.2 ng/g lipid). PBDEs in this population (median 15.4 ng/g lipid) ranked amongst the highest of previously described concentrations in populations in Europe, Asia, New Zealand and Australia, yet it was lower than those found in North American reports. Age was clearly the socio-demographic factor of highest influence on the PBDE distributions. However, unlike usual trends of higher accumulation of POPs through age, the higher concentrations were found in young individuals (< 30 years) rather than in adults (≥ 30 years), with differences of 14%, 31% and 46% in the most abundant congeners (i.e. BDE-209, BDE-99 and BDE-47, respectively). This age-dependent distribution of PBDEs (including the case for BDE-209, which is shown for the first time in this study) is explained by the higher and widespread use of these compounds since the 1980s. In view that these compounds remain highly used, this accumulation pattern is likely to evolve, anticipating an increasing level of PBDE concentrations in future general population surveys, yet probably assuming an age-dependent increase pattern. Socio-economic level was also a determinant of BDE-47 concentrations, but only relevant for the least affluent class, suggesting that lifestyle and environmental conditions in the dwelling place may also contribute to exposure. Nonetheless, gender, body mass index, place of birth, parity and education level did not show any statistically significant influence on the observed PBDE distributions.  相似文献   

15.
Concentrations of 14 polybrominated diphenyl ether (PBDEs) and 28 polychlorinated biphenyl (PCBs) congers were measured in 137 samples of fish and meat from Nanjing, a city in the Yangtze River Delta, China. Total concentrations of PBDEs were less in fish (mean of 180 pg/g ww; range 8.0–1100 pg/g ww), but more in non fish foods (mean of 180 pg/g ww; range 15–950 pg/g ww) than those reported from other countries. The total dietary intake of PBDEs and PCBs by humans were 9.9 ng PBDE/d and 870 ng PCB/d, respectively. The daily intake by a 60 kg adult of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQWHO) from PCBs was estimated to be 49 pg PCBTEQWHO/d (0.82 pg PCBTEQWHO/kg bw), which is less than the tolerable daily intake suggested by the World Health Organization (WHO). The daily intake of meat and fish accounted for 57.2% and 42.8% of the total intake of PCBTEQWHO.  相似文献   

16.
Assessment of indoor exposure to polybrominated diphenyl ethers (PBDEs) requires a critical examination of methods that may influence exposure estimates and comparisons between studies. We measured PBDEs in residential dust collected from 20 homes in Boston, MA, to examine 5 key questions: 1) Does the choice of dust exposure metric-e.g., concentration (ng/g) or dust loading (ng/m2)-affect analysis and results? 2) To what degree do dust concentrations change over time? 3) Do dust concentrations vary between rooms? 4) Is the home vacuum bag an acceptable surrogate for researcher-collected dust? 5) Are air and dust concentrations correlated for the same room? We used linear mixed-effects models to analyze the data while accounting for within-home and within-room correlations. We found that PBDE dust concentration and surface loading were highly correlated (r=0.86-0.95, p<0.001). Average dust concentrations did not significantly differ over an 8-month period, possibly because home furnishings changed little over this time. We observed significant differences between rooms in the same home: PBDE concentrations in the main living area were 97% higher than the bedroom for decaBDE (p=0.02) and 72% higher for pentaBDE (p=0.05). Home vacuum bag dust concentrations were significantly lower than researcher-collected dust and not strongly correlated. Air (vapor and particulate phase) and dust concentrations were correlated for pentaBDE (p=0.62, p<0.01), but not for decaBDE (p=0.25). In addition, potential markers of BDE 209 debromination (BDE 202 and the BDE197:BDE201 ratio) were also observed in household dust samples. One vacuum bag sample contained the highest concentrations of BDE 209 (527,000 ng/g) and total PBDEs (544,000 ng/g) that have been reported in house dust.  相似文献   

17.
Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM2.5 levels (1.3 × 101 to 2.9 × 101 μg/m3 for indoor; 9.5 to 8.8 × 101 μg/m3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5 × 101 μg/m3). Indoor PM2.5 mass concentrations were correlated with outdoor PM2.5 in four of the kindergartens. The PBDEs (0.10–0.64 ng/m3 in PM2.5; 0.30–2.0 × 102 ng/g in dust) and DP (0.05–0.10 ng/m3 in PM2.5; 1.3–8.7 ng/g in dust) were detected in 100% of the PM2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by > 7-fold from 8.8 × 102 ng/m 3 to 6.7 × 103 ng/m 3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7 × 101 μg/m3 to 9.3 × 101 μg/m3 indoors and from 1.9 × 101 μg/m3 to 4.3 × 101 μg/m3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E  05 to 2.1E  04 indoors and from 1.9E  05 to 6.2E  05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments.  相似文献   

18.
Levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) were determined in the sediment and several species (European flounder, Platichthys flesus; common sole, Solea solea; Chinese mitten crab, Eriocheir sinensis; shore crab, Carcinus maenas; brown shrimp, Crangon crangon; blue mussel, Mytilus edulis and bristle worms, Polychaeta) from 7 locations in the Scheldt estuary (SE, the Netherlands–Belgium). Overall POP levels in the sediment were low. The average PCB and PBDE concentrations were respectively 31.5 and 115 ng/g dry weight (dw). Highest sediment loads were measured in the vicinity of Antwerp (368 ng PCBs/g dw), a location with intense harbor and industrial activities. Pollution concentrations in the tissues of biota were species-specific. Blue mussels contained the highest lipid concentrations (2.74 ± 0.55%) and reached the highest contamination levels (from 287 to 1688 ng PCBs/g ww, from 2.09 to 12.4 ng PBDEs/g ww). Lowest tissue loads were measured in brown shrimp (from 3.27 to 39.9 ng PCBs/g ww, from 0.05 to 0.47 ng PBDEs/g ww). The PCB congener profile in most of the species was similar with the pattern found in the sediment. PCB 153 was the most abundant congener (16.5–25.7% in biota, 10.4% in sediment). In the sediment, the total amount of PBDEs consisted for more than 99% of BDE 209. Congener BDE 47 had the highest concentrations in all sampled species (38.5–70.1%). Sediment POP loadings and tissue concentrations were poorly correlated, indicating that a simple linear or non-linear relationship is insufficient to describe this relationship, possible caused by the complexity of the bioaccumulation processes and the variability in exposure. Because of the high PCB levels, regular consumption of fish and seafood, especially mussels, from the Scheldt estuary should be avoided.  相似文献   

19.
Breast milk samples (n = 74) from the general maternal population of Zhejiang province were analyzed for polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Samples were divided into urban and rural groups. Mean ∑PCDD/F, ∑PCB and ∑PBDE concentrations were 71.4 ± 40.8, 42774 ± 27841 and 2679 ± 944 pg g 1 lipid in the urban group and 38.6 ± 38.1, 26546 ± 11375 and 2731 ± 1093 pg g 1 lipid in the rural group, respectively. WHO-TEQ concentrations for dioxin-like PCBs and PCDD/Fs were 2.66 ± 1.43 and 3.90 ± 2.60 pg g 1 lipid in the urban group and 1.83 ± 0.93 and 2.27 ± 1.55 pg g 1 lipid in the rural group, respectively. Congener profiles for these pollutants were compared between human samples (adipose tissue and breast milk) and foodstuffs (seafood, hen eggs, and freshwater fish). Similar PCB and PCDD/F congener patterns were observed, suggesting that dietary intake is a significant source for human exposure to PCBs and PCDD/Fs. However, much lower PBDE congener levels were detected in breast milk than in foodstuffs, which implies that pathways other than dietary intake may also account for human exposure to PBDEs.  相似文献   

20.
Indoor and outdoor endotoxin in PM2.5 was measured for the very first time in Santiago, Chile, in spring 2012. Average endotoxin concentrations were 0.099 and 0.094 [EU/m3] for indoor (N = 44) and outdoor (N = 41) samples, respectively; the indoor–outdoor correlation (log-transformed concentrations) was low: R =  0.06, 95% CI: (− 0.35 to 0.24), likely owing to outdoor spatial variability.A linear regression model explained 68% of variability in outdoor endotoxins, using as predictors elemental carbon (a proxy of traffic emissions), chlorine (a tracer of marine air masses reaching the city) and relative humidity (a modulator of surface emissions of dust, vegetation and garbage debris). In this study, for the first time a potential source contribution function (PSCF) was applied to outdoor endotoxin measurements. Wind trajectory analysis identified upwind agricultural sources as contributors to the short-term, outdoor endotoxin variability. Our results confirm an association between combustion particles from traffic and outdoor endotoxin concentrations.For indoor endotoxins, a predictive model was developed but it only explained 44% of endotoxin variability; the significant predictors were tracers of indoor PM2.5 dust (Si, Ca), number of external windows and number of hours with internal doors open. Results suggest that short-term indoor endotoxin variability may be driven by household dust/garbage production and handling. This would explain the modest predictive performance of published models that use answers to household surveys as predictors. One feasible alternative is to increase the sampling period so that household features would arise as significant predictors of long-term airborne endotoxin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号