首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
本文采用长江流域内分布较均匀、无缺测站点的1960~2010年逐日降水资料,借助趋势和突变分析、R/S分析和水文频率分析等方法,研究该流域极端降水的时空演变特征和未来趋势。结果表明:(1)长江流域区域平均气候平均降水量(PAV)、简单日降水强度(PINT)、强降水贡献率(PQ95)、强降水阈值(PF95)、最大1日-10日降水量(PX1D-PX10D)基本均呈上升趋势,中下游各极端降水指数均大于上游,同时,中下游的各指数年际变化比上游更剧烈。(2)PAV与PF95的空间分布类似,但前者在流域中部地区下降、两侧上升,而后者为中部上升、两侧下降;PINT与PQ95的空间分布相似,均为大部分地区呈上升趋势,仅西北部下降。PX1D-PX10D总体上以上升为主,但随着持续时间的增长,下降的区域有明显的扩大,而上升的区域有明显的缩小。(3)未来长江流域极端降水将以现有趋势继续发展,并将以上升趋势为主,流域洪涝灾害风险加大。(4)遂宁站PX1D、安化站PX10D极端降水的频率分析表明,直接采用整体数据计算设计降水量会使结果偏于不安全,对于较长重现期的设计降水表现更显著,因此对于极端降水量发生显著变化的情况需要深入研究,探讨更好的设计降水估计方法。  相似文献   

2.
基于长江流域1963~2016年131个气象站点逐日降水资料,计算了年降水、强降水(极端降水和暴雨)的集中度(PCD)、集中期(PCP),并结合M-K非参数性趋势检验分析以及相关分析等方法对长江流域降水非均匀性分布特征及其趋势进行了分析,目的在于揭示不同类型降水量在流域内非均匀性分布的特征,加强对强降水在时空分布上的理解。结果表明:流域多年平均年内日降水量集中度(PCDDP)、集中期(PCPDP)均由下游向上游递增,PCDDP变化趋势不显著而PCPDP变化趋势在空间上差异明显,在流域中下游呈增长趋势、上游呈减小趋势;年降水量与PCDDP呈显著正相关的地区主要分布在四川盆地;流域年极端降水量PCDEP、PCPEP的多年平均分布及变化趋势与PCDDP、PCPDP相似。流域多年平均暴雨量(日降水≥50 mm)从下游向上游递减,在四川盆地较四周高,暴雨在流域东部呈增长趋势,在四川盆地呈减小趋势;年暴雨量集中度(PCDRP)、集中期(PCPRP)从流域东南向西北递减,在湖北、贵州以及四川东部PCDRP呈增加趋势,在流域东南部呈减小趋势;PCPRP在江浙、安徽、湖南及贵州地区呈不明显的增加趋势,在四川、云南等地呈减少趋势。  相似文献   

3.
利用1963~2015年长江流域115个气象站点逐日降水数据,分析了不同极端降水指标的空间变化特点和时间变化趋势。结果表明,近53 a来,长江流域多年平均年极端降水量与年降水量从下游到上游逐渐递减,两者变化趋势大致呈现“增-减-增”的空间分布格局。年极端降水量对年降水量贡献(PEP)存在明显的空间分布差异,但贡献比例在流域内普遍呈现增加的趋势。持续1 d的极端降水事件的降水量分布及其变化趋势与年极端降水量的分布特征类似,其对年极端降水量的贡献比例高达65%以上,说明长江流域极端降水以持续1 d的极端降水事件为主。持续2 d及以上的极端降水事件主要集在中皖苏赣局部地区和四川中部地区,但其降水量对年极端降水量的贡献比例较小。从上游到下游,年最大日降水量(MDP)逐渐增大。其中,上游源头地区的沱沱河、曲麻莱和玉树3个站点MDP主要集中在0~25 mm之间,其他站点均以25~50 mm量级为主;长江流域中部地区的MDP大部分以50~100 mm的量级为主,处于100~150 mm之间的次之;长江流域东部地区主要以100~150 mm量级的MDP为主。 关键词: 极端降水;降水贡献;不同历时;长江流域  相似文献   

4.
近50年鄱阳湖五大流域降水变化特征研究   总被引:16,自引:1,他引:15  
基于鄱阳湖流域在江西省内部分对应的79县市气象站1960~2006年逐日降水观测资料,采用线性回归的方法分别研究五大流域的年降水量、降水日数、暴雨日数等3要素的变化趋势,并用Mann法进行了变化趋势的显著性检验,用距平与均方差之比达到15和20作为气候异常检验指标,对各流域的各时间序列进行了异常检验,采用了Mann Kendall法对各时间序列进行突变检测。结果表明:(1)各流域的年降水量变化趋势基本一致,年降水量与年暴雨日数密切相关;饶河流域强降水事件较多,降水强度大,赣江中游流域降水时间分布相对较均匀,强降水事件较少;(2)各流域年降水量、暴雨日数总体呈波动上升趋势,20世纪90年代以来暴雨日数异常偏多的概率最大;(3)年降水日数以20世纪80年代中期为界,之前呈波动上升趋势,之后呈波动下降趋势,2002年至今各流域降雨日数明显偏少;(4)各流域的年降水量、降水日数、暴雨日数均未出现趋势性的突变;(5)近50年来鄱阳湖流域降水时间分布不均的情况加剧,旱涝灾害风险增加。  相似文献   

5.
基于1961~2019年逐日降水格点数据,对长江流域偏前型、偏后型、均衡型和单日型极端降水时空变化特征进行分析。结果表明:(1)在变化过程上,1961~2019年,长江流域偏前型极端降水先增加后下降,偏后型、均衡型极端降水变化以平稳波动为主,单日型极端降水持续上升;(2)在空间格局上,长江流域偏前型、偏后型极端降水量呈现“东南高—西北低”的分布格局,均衡型极端降水高值区分布于金沙江、鄱阳湖流域,单日型极端降水空间特征表现为“中间高、两侧低”;(3)在影响因素上,长江流域及其子流域不同类型极端降水与两类厄尔尼诺(东部型-Ni1o 1+2区和中部型-Ni1o 3.4区)正相关占比为79.2%,且与Ni1o 1+2区的相关性高于Ni1o 3.4区;(4)1998年长江流域极端降水以偏前型为主导,7月20~26日偏前型极端降水事件为1998年夏季洪涝灾害的核心致灾因子。  相似文献   

6.
使用长江流域142个站1960~2009年逐日降水量资料,通过定义度量极端降水过程时空聚集程度的参数--极端降水过程事件聚集度和聚集期,并采用主成分分析、Morlet小波分析方法,研究了长江流域极端降水过程事件的年内分布特征。结果表明:长江流域上游极端降水过程事件主要聚集在7月上旬,出现相对比较集中,且聚集度和聚集期年际变化小;中下游则主要聚集在5月中旬至6月下旬,出现比较分散,聚集度和聚集期年际变化相对较大。极端降水过程事件聚集度和聚集期的主要空间异常模态分别表现为东南与西北反向和南北反向的变化特征;其区域平均序列分别呈上升和下降趋势,并分别在13 a和10 a尺度上周期震荡明显,表明长江流域极端降水过程事件的发生有趋于集中和提早趋势  相似文献   

7.
选取汉江中上游流域作为研究区域,根据丹江口水库1969~2008年日入库流量资料和IPCC第4次评估报告多模式数据结果,分别采用广义极值分布(GEV)模型和广义帕累托分布(GPD)模型拟合流域1 d最大洪量和3 d最大洪量系列,遴选出描述流域1 d最大洪量和3 d最大洪量分布规律的最优概率模型,推算了其重现期对应的设计值,并分析了该流域极端洪水事件对未来气候变化情景下的响应情况。结果显示:汉江中上游流域1 d最大洪量和3 d最大洪量系列符合广义极值分布和广义帕累托分布,相同重现期下广义极值分布预估的极值比广义帕累托分布预估值略有偏大;未来气候变化各情景下,用广义帕累托分布所拟合的汉江中上游流域1 d最大洪量和3 d最大洪量结果要优于广义极值分布,不同重现期的洪量比历史资料估算的重现水平偏小,说明了气候变化对洪量极值的变化有着直接影响  相似文献   

8.
近52a长江中下游地区极端降水的时空变化特征   总被引:3,自引:0,他引:3  
长江中下游地区是我国主要农业区,同时也是降水异常,洪涝灾害频繁发生的地区之一,对长江中下游地区极端降水变化的研究,可以为该区农业生产及防洪减灾提供参考依据。利用1961~2012年间的长江中下游地区84个站点的逐日降水观测资料,基于年最大日降水(AM)序列与超门限峰值降水(POT)序列,通过滑动平均、Mann-Kendall检验法、线性倾向估计等方法,分析了该地区极端降水事件的时空变化特征。结果表明:(1)长江中下游地区近52a来极端降水量呈现为较明显的增加趋势,且极端降水量速率为9.3mm/10a,存在较为明显的年代际波动变化特征,1990年以后进入极端降水量偏多的时期;(2)AM与POT序列多年平均值大值主要分布在江西省大部、湖北东南部以及安徽南部;AM与POT序列多年标准差大值主要分布江西东南部与北部,湖北东南部以及湖南西北部;AM序列多年平均值与标准差均高于POT序列,AM序列年际间振幅要明显强于POT序列,极端降水年际变化幅度大于年内变化;(3)长江中下游沿岸地区年最大日降水量主要表现为增加趋势,长江以北的西部地区则主要表现为减少趋势;长江沿岸地区以及中东部地区的极端降水量主要表现为增加趋势,西部地区则主要表现为减少趋势。  相似文献   

9.
受气候变化和人类活动等因素影响,水文气象时间序列失去了一致性。以湖南省89个气象站点1960~2013年逐日气温资料为基础,选取年平均日最高温度(AMMT)和超过95th分位值的平均日最高温度(POT),研究非一致性条件下湖南省极端高温指数的频率特征。结果表明:湖南省89个站点中有59个站点(66.3%)的AMMT序列和23个站点(25.8%)的POT序列呈现显著的非一致性。利用线性矩法和Cramer-von Mises(C-M)检验等方法,发现广义正态分布(GNO)函数能较好地拟合研究区极端高温指数序列。通过还原途径修正非一致性序列,并对修正前、后不同重现期水平下的极端高温指数的估算值进行对比,发现气候变化条件下AMMT序列在湘北、湘中和湘东南地区呈现强度增强和重现期缩短的趋势,而POT序列仅在湘北和湘东南地区呈现出相似的频率特征变化。  相似文献   

10.
河南省汛期极端降水事件分析   总被引:6,自引:2,他引:6  
利用河南1961~2006年50个气象站台站汛期(6~8月份)逐日降水量资料,定义95%降水分位数为极端降水事件的阈值,建立不同站近46年汛期极端降水事件发生频次的时间序列。在此基础上采用趋势分析、最大熵谱分析等统计技术方法,对河南降水事件发生频次的空间分布及年际变化特点进行了分析。结果表明:空间变化上总体具有北多南少的特点,而且汛期降水量的比重与极端降水事件发生频次的高低存在着很好的一致性;空间分布上主要有全省一致型、西北 东南型、南阳盆地型和中部分布型等4种类型,其中全省一致分布型为最主要的空间模态;年际变化趋势各地有所不同,豫西、豫南区为减少趋势,而豫中、豫北、豫东和豫西南区表现为增加趋势,而且在振荡形态上各有同异,以2~8年和10年左右的年代际变化最为普遍。  相似文献   

11.
利用2000~2012年金沙江中下游流域56个国家气象观测站逐日08~08时降水资料,采用算术平均法计算得到金沙江中下游5个子流域逐日面雨量,对金沙江中下游及5个子流域面雨量的时空分布特征进行了分析,重点分析了强降水日面雨量的季节分布、频次分布、等级分布、极值分布等统计特征。结果表明:金沙江中下游降水的时空变化特征明显,年平均面雨量为812 mm,夏季降水最多,秋季次之,冬季最少,且秋雨多于春雨;5~10月为降雨集中期,降水总量占年平均降水的91%;5个子流域平均每年出现日面雨量≥20 mm的强降水29.5次,且夏季最多,秋季次之;华弹 屏山段出现强降水的频次最高,横江流域次之,雅砻江下游最少,但横江流域最易出现强降水极大值;华弹 屏山和横江流域同时发生强降水的频率最高,占流域性强降水总次数的521%,在开展金沙江中下游流域面雨量预报时要特别加以关注  相似文献   

12.
基于长江中下游地区1961~2100年区域气候模式COSMO-CLM(CCLM)模拟与1961~2005年气象站观测的逐日降水数据,通过统计计算年降水量、强降水量、暴雨日数和极端降水贡献率4个极端降水指数,研究全球升温1.5℃与2.0℃情景下,长江中下游地区极端降水的时空变化特征。结果表明:(1)全球升温1.5℃情景下,年降水量相对于1986~2005年减少5%,强降水量、暴雨日数和极端降水贡献率分别增加7%、33%和4%;概率密度曲线表明,年降水量均值下降,强降水量、暴雨日数和极端降水贡献率均值上升,极端降水方差增大;年降水量、强降水量和暴雨日数在空间上表现为南部增加北部减少,极端降水贡献率则相反。(2)全球升温2.0℃情景下,年降水量下降3%,强降水量、暴雨日数和极端降水贡献率分别上升15%、46%和15%;年降水量均值稍有减少且方差稍有上升,强降水量、暴雨日数和极端降水贡献率均值和方差明显增加;年降水量减少区域位于长江主干以北,强降水量、暴雨日数和极端降水贡献率表现为绝大部分地区增加的空间变化特征。(3)全球升温由1.5℃至2.0℃时,年降水量、强降水量、暴雨日数和极端降水贡献率分别增加3%、7%、10%和11%;随升温幅度的增加极端降水均值和方差上升;极端降水呈增加态势的范围扩大。因此,努力将升温控制在1.5℃对降低极端降水的影响具有重要意义。  相似文献   

13.
Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, five indicators (rainstorm days, maximum 3-day precipitation, elevation, gradient and distance from river or lake) were selected to project the spatial patterns of flood hazard over Yangtze River Basin for the baseline period (1961– 1990) and future (2011–2100) under SRES B2 scenario. The results ...  相似文献   

14.
利用1998~2013年热带测雨卫星TRMM 3B42降水率资料以及NCEP/CFSR温度场、气压场和风场等再分析格点资料等,从气候学角度揭示了长江流域梅雨季节降水和对流的日变化特征,探讨了典型和非典型梅雨锋年降水日变化差异,分析了大气环境场要素的日变化特征及其对降水和对流日变化影响。结果表明:(1)强降水在夜间发生在长江上游,白天发生在长江中下游。降水日变化特征显著,长江上游、盆地以东的中游以及中下游的沿江以南地区降水日峰值分别出现在午夜、清晨08时以及傍晚17时。沿江以北地区降水表现出半日循环,具有08时和17时两个峰值,午后峰值明显强于清晨。(2)长江中游地区降水日位相较上游地区延迟约6 h,下游地区日位相进一步向后推移,同时下游地区降水强度和范围明显强于上游,降水日较差也更明显。(3)典型梅雨锋年和近15年梅雨季节平均的降水日变化分布特征较为一致,非典型梅雨锋年较前两者日峰值出现时间明显提前。(4)短时强降水和深对流有较好的对应关系,白天高发区位于长江下游,夜间位于上游。(5)大气温压场在梅雨锋两侧显著的日变化差异使梅雨锋强度和结构在昼夜形成了差异,并使低层风场的辐合位置产生了日变化,这些大气环境场的日变化最终导致了梅雨期对流和降水的日变化。  相似文献   

15.
基于大渡河流域1961~2010年逐日降水数据资料,运用Mann-Kendall非参数检验、Morlet小波分析法,分析了近50a来大渡河流域极端降水事件的时空变化特征。结果表明,大渡河流域的极端降水指数均呈现出相对稳定的波动增加;多年平均值均呈现出由西北向东南方向逐渐增多的分布特征,变化趋势的空间分布存在着区域差异:除强降水日数外,其他极端降水指数均呈现下游增加,上游减小的变化趋势,大渡河流域极端降水与年降水量变化趋势密切相关。大渡河流域各指数突变特征不一致,1d、5d最大降水量突变年集中在1974~1976年前后;强降水日数、极端降水量及极端强降水日数发生突变的年份分别为1984年、1979年及1977年,且突变后呈现明显的增大趋势。大渡河流域极端降水指数周期特征较复杂,但普遍存在5~10a的年际振荡周期和20~25a的年代际振荡周期,且25a是最强的主周期。  相似文献   

16.
全球气候变化背景下,由于降水时间序列存在非平稳性,导致利用传统的标准化降水指数(SSPI)估计的干旱可能存在较大偏差。文章基于GAMLSS模型,以气候指数作为解释变量进行参数拟合,建立一种基于可变参数的非平稳伽玛模型,计算非平稳标准化降水指数(NSPI),并与SSPI指数对比分析长江流域1962~2016年干旱时空变化特征,结果表明:(1)NSPI与SSPI变化基本一致,但非平稳伽玛模型比平稳伽玛模型更好地重现降水量以捕获当前全球气候变化背景下的降水变化。(2)长江流域1962~2016年干旱有加重趋势。上游干旱烈度、干旱历时、干旱强度和烈度峰值的变化速率分别为每10年上升0.064、0.041、0.023和0.027,而中下游则分别为0.151、0.089、0.021和0.030;干旱强度以轻至中旱为主。长江源头和四川盆地西南部干旱较严重,而金沙江和雅砻江上游及鄱阳湖南部的干旱相对轻微。(3)与SSPI相比,NSPI估计的相同干旱烈度和干旱历时的重现期较大,且估计的干旱事件相对集中。NSPI的干旱风险表明长江源头、金沙江下游和洞庭湖流域中部是高风险集中区,而川江上游和鄱阳湖东南部是低风险集中区。(4)构建的非平稳伽玛模型估计的NSPI能较好的预测各干旱特征,且对干旱烈度和干旱历时的预测性能更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号